Approche Neuropsychologique des Apprentissages chez l'Enfant

- Troubles cognitifs et myopathie de Duchenne
- Benign partial epilepsy I : Hand preference and skill
- II : Focus hemisphere distribution, hand preference and school performance
- Tétra-ataxiemétrie et autisme
- Dyslexie acquise et développementale
- Un cas de syndrome d'Asperger

Juin 1991 numéro 2 volume 3
HEPATOCYTES ISOLES ET EN CULTURE
André Guillouzo et Christiane Guguen-Guillouzo

HYPERTROPHIE ET INSUFFISANCE CARDIAQUES
Bernard Swynghedauw

RETROVIRUS ET ONCOGENES
Michel Crépin

LES LIPOSOMES EN BIOLOGIE CELLULAIRE ET PHARMACOLOGIE
Patrick Machy
Lee Leserman

Publiée simultanément en deux versions:
en français et en anglais - la collection "Recherches en..." aborde tous
les domaines de la recherche biomédica-
le et en santé dans lesquels la recher-
che française, et notamment l'INSERM,
ocupe une place internationale et pri-
vilégiée.
Le contenu des ouvrages de cette col-
lection correspond à des synthèses très
récentes dans des domaines de recherche
fondamentale en plein développement ou
qui ont fait l'objet de découvertes ou
de mises au point récentes.
Co-édition INSERM
John Libbey Eurotext

780 pages, 750 F

Bon de Commande

NOM
Prénom
Adresse
Veuillez m'adresser ... exemplaire(s) de...

Je joins la somme de chèque bancaire à l'ordre de
John Libbey Eurotext - 6, rue Blanche, 92120 Montrouge. Tél. : (1) 47.35.85.52.
Directeur de la publication
Gilles CAHN

Rédacteur en chef
Claude Jeanne MADELIN

Comité de rédaction
Michèle BALLANGER (France)
Martine BARBEAU (France)
Catherine BILLARD (France)
Thierry BILLETTE DE VILLEMEUR (France)
Olivier DULAC (France)
James EVERETT (Canada)
Christophe GERARD (France)
Isabelle JAMBAQUE (France)
Paul MESSERSCHMITT (France)
Jean-Paul MIALET (France)
Ovidio RAMOS (France)
Henri SZLIWOWSKI (Belgique)
Jacques THOMAS (Canada)
Sylviane VALDOIS (France)
Anne VAN HOUT (Belgique)
Guy WILLEMS (Belgique)

Administration-Publicité
Martine KRIEF

Secrétaire général de la rédaction
François FLORI

Secrétariat
Isabelle ROUXEL

Comité scientifique
Michel BASQUIN (France)
Claude CHEVRIE-MÜLLER (France)
Ennio DEL GIUDICE (Italie)
Thierry DEONNA (Suisse)
Blanche DucARNE (France)
Michel DUGAS (France)
Bernard ECHENNE (France)
Philippe EVRARD (Belgique)
François GAILLARD (Suisse)
Philippe LACERT (France)
Yvan LEBRUN (Belgique)
Marie-Christine MOUREN (France)
Juan NARBONA (Espagne)
Gérard PONSOT (France)
Bent STIGSBY (Danemark)
Michael THOMSON (Royaume-Uni)
Régis DE VILLARD (France)

71 Editorial
C. BILLARD

73 Troubles cognitifs dans la myopathie de Duchenne de Boulogne
C.-L. GERARD, D.-G. BRUGEL
Latéralité dans l’épilepsie partielle de l’enfance avec pointes rolandiques

77 I : Adresse et préférence manuelle

83 II : Distribution du foyer hémisphérique, adresse manuelle et rendement scolaire
C. GARAIZAR, M.-L. GARCIA-NIETO, J. ROMO, J.-M. PRATS

89 La contribution de la posturographie tétra-ataxiémétique au diagnostic différentiel des enfants autistiques
R. KOHEN-RAZ, J. ROZENBERGER, Z.L. CHEN

96 Dyslexie acquise et dyslexie développementale : approche comparative
S. VALDOIS

104 Relation entre autisme infantile et syndrome d’Asperger : à propos d’un cas
P. MESSERSCHMITT, D. LEGRAIN, C.-J. MADELIN

Actualités

112 Livres, informations, congrès
LA BIOLOGIE D'AUJOURD'HUI
LA MÉDECINE DE DEMAIN

DES SYNTHÈSES SIDA, cancer, embryologie, médicaments nouveaux, fécondité et procréation médicalement assistée, génie génétique, neurobiologie, éthique, maladies infectieuses et parasitaires, immunologie, vieillissement, économie de la santé...

DES NOUVELLES DE L'ACTUALITÉ SCIENTIFIQUE
DU MONDE ENTIER par des chercheurs de premier plan

DES LEXIQUES Mises au point brèves et actuelles des sciences qui bougent (génie génétique, immunologie, neurobiologie)... Par des spécialistes internationalement reconnus

DES RÉSULTATS ORIGINAUX DE PREMIÈRE IMPORTANCE
- Le premier traitement d'une maladie enzymatique chez l'animal par greffe de gène
- L'amplification d'ADN appliquée au diagnostic de cancers humains
- De nouvelles cibles antigéniques pour les vaccins anti-SIDA.

BULLETIN D'ABONNEMENT ANNUEL 10 numéros

Je souhaite m'abonner à m/s au tarif indiqué ci-dessous :

☐ Particuliers ☐ Institutions ☐ Étudiants
375 FF 660 FF 240 FF

Nom de l'abonné

Adresse complète

Je joins ☐ un chèque bancaire
☐ un chèque postal
à l'ordre de CDR
à envoyer à John Libbey Eurotext
• 6, rue Blanche • 92120 Montrouge
CONTENTS

71 Editorial
C. BILLARD

73 Neuropsychological disorders in the progressive muscular dystrophy (Duchenne's type)
C.-L. GERARD, D.-G. BRUGEL
Laterality in benign partial epilepsy of childhood with rolandic spikes

77 I: Hand preference and skill

83 II: Focus hemisphere distribution, hand preference and school performance
C. GARAZAR, M.-L. GARCIA-NIETO, J. ROMO, J.-M. PRATS

89 Tetra-ataxiometric posturography for differential diagnostic of autistic children
R. KOHEN-RAZ, J. ROZENBERGER, Z.L. CHEN

96 Acquired dyslexia and developmental dyslexia: a comparative analysis
S. VALDOIS

104 Relationship between infantile autism and Asperger's syndrome: about a case
P. MESSERSCHMITT, D. LEGRAIN, C.-J. MADELIN

Current events

112 Books, information, meeting
INSTRUCTIONS TO AUTHORS

ANAE publishes original, clinical and synthesis manuscripts, editorials, abstracts of scientific meetings in French or in English, as well as answers to articles published in the journal. The original articles must not be submitted elsewhere for publication.

- ARTICLES
When the author proposes an article, he must always submit to the editor all the previous submissions which could be considered as a double publication of the same article. A second publication in an other language must answer to the following conditions:
- the agreement of the two newspapers editors,
- a period of at least one month between the two publications,
- the readers of the second publication must be different from the first one,
- the title page of the second publication must inform the readers about the first one.
Requests for partial or total reproduction in an other journal or publication should be sent to the publisher.

- MANUSCRIPTS
The manuscript should be submitted in triplicate (figures and tables as well) in order to be simultaneously examined by two persons. Each part of the manuscript must start on a new page, according to the following order:
- title page: short but clear title with the authors' name and surname initials, the institution where the work was done. Whenever possible, supply the translation in French;
- summary and keywords: typed on the second page, the summary, in French and in English, of 100 to 250 words, without abbreviations, should describe the purpose, results and conclusions of the study. Under the summary, the author should give 3 to 10 keys words, suitable for use by abstracting journals.
- text: the average length of the paper is 12 type-written pages, using the A4 size of paper, with double spacing, 25 lines pages, on one side of the paper;
- acknowledgements: these should be included at the end of the manuscript, separated from the main text.

- REFERENCES
They should be cited in the text according to the name(s) and date system. If there are several authors, the text citation should contain the name of the first author followed by et al. Ex.: (DURAND et al., 1981). At the end of the article, the list of references should be arranged alphabetically, and chronologically for the same author. If reference is made to more than one publication by the same author in one year, suffixes (a, b, c, etc.) should be added to the year in the text citation. If there are six authors or less, indicate all the authors. If there are more than six authors, indicate the three first ones followed by et al.
In the reference list, arrange the reference in the order:
- Journal article: author's name and surname initial, separated from the following name with a comma. (Year of publication). Title of the article. Title of the journal, abbreviated according to the Index Medicus system (no punctuation after abbreviations); volume of the journal: first and last page of the article.
Exemple:
- Book article: same arrangement of the authors. Title of the article. In: Names and initials of the authors, eds (year of publication). Title of book, (name of the publisher), address (city), pagination and number of pages.
Exemple:
- Book: same arrangement of the authors. (Year of publication). Title of the book, (name of the publisher), address (city), pagination or number of pages.
Exemple:

- ILLUSTRATIONS
They should appear on separate pages with their legends. For tables and figures, exact references should appear (authors, title of the book, publisher...) so that reprints should be provided.
Documents in the body of the text should be identified by Arabic numerals (figure 2) and tables by Roman ones (Table I) and the place where it should appear in the body of the text must be indicated on the manuscript. Please write in the back: the author's name, the number of the figure, the top indicated with an arrow.

All information concerning publication should be sent to:
Dr C.-J. Madelin, Chief Editor, 74, rue de Lille, 75007 Paris, France
Éditorial

Dystrophie musculaire de Duchenne et fonctions cognitives

L'interrogation sur l'intelligence des enfants atteints de myopathie de Duchenne (DMD) reste au cœur des discussions de la neuropsychologie infantile. Quatre questions se posent :

— Les DMD entraînent-elles, à l'inverse des autres maladies du système nerveux périphérique, des difficultés particulières dans les apprentissages scolaires, et alors pour quelle proportion d'enfants ?

— Ces difficultés d'apprentissage seraient-elles liées à des déficits neuropsychologiques spécifiques (langage ? mémoire ? attention ?), ou globaux ? Le profil en est-il identique pour chaque enfant ?

— Faut-il imputer ces troubles à une conséquence psychosociale de cette terrible maladie encore incurable et fatale ? En s'appuyant sur les théories psycho-analytiques qui lient les capacités de symbolisation à l'intégrité du « moi » ou sur les théories piagétiennes qui lient la construction des outils de la pensée aux événements touchant les phases précoces du développement de l'enfant, on concevrait l'influence néfaste d'une affection grave sur les fonctions cognitives.

— À l'inverse, s'agit-il d'un déficit cognitif dont l'origine « organique », même si elle n'est pas actuellement visualisée par une lésion cérébrale précise, est à rattacher au gène de la DMD bien localisé sur le chromosome X. Auquel cas, un désordre neuropsychologique précis au profil homo-gène, s'il est fiable à un aspect particulier de la taille ou de la position de la délétion en Xp 21, permettrait d'une certaine façon et ambitieusement d'approcher la génétique de l'intelligence. Même si un tel objectif a peu de chances d'être atteint, régler la question de la possibilité ou non d'un déficit cognitif chez les DMD, et en préciser la sémiologie amènera à une série de conséquences pratiques et positives qui méritent de dépasser les querelles passionnelles. Cela permettra de dépister les enfants DMD « à risque » sur le plan cognitif, de les rééduquer précocement et de façon appropriée à leur trouble et de leur présenter une pédagogie peut-être plus efficace.

Catherine BILLARD*

* Neurologie-Neurochirurgie infantile, Hôpital Clocheville, boulevard Béranger, 37044 Tours, France.
INSTRUCTIONS AUX AUTEURS

ANAE publie articles originaux, articles de synthèse, cas cliniques, editoriaux, comptes rendus de réunions scientifiques en français ou en anglais. Elle peut publier des lettres adressées en réponse à des articles parus dans la revue. Les articles originaux ne doivent pas être soumis pour publication à une autre revue.

- ARTICLES
En proposant un article, l’auteur doit toujours exposer au rédacteur toutes les soumissions antérieures et les rapports préliminaires pouvant être considérés comme une double publication du même travail. Une seconde publication dans une autre langue doit respecter les conditions suivantes:
- accord des rédacteurs des deux journaux,
- intervalle d’au moins un mois entre les deux publications,
- la deuxième publication s’adresse à un groupe de lecteurs différent.
Une note sur la page de titre de la seconde publication informe les lecteurs de sa première parution:
- les auteurs s’engagent à demander l’autorisation à l’éditeur d’ANAE au cas où ils désireraient reproduire partie ou totalité de leur article dans un autre périodique ou une autre publication.

- MANUSCRITS
Le manuscrit doit être fourni en trois exemplaires (y compris figures et tableaux) afin d’être examiné simultanément par deux lecteurs.
Chaque partie du manuscrit doit commencer sur une nouvelle page, selon l’ordre suivant:
- page du titre: titre concis, mais informatif suivi du nom et initiale du prénom des auteurs, leurs fonctions et adresse de leur lieu d’exercice. Adjoindre au titre en français le titre en anglais ou vice versa;
- résumé et mots clés: la 2e page contient un résumé en français et anglais de 100 à 250 mots, sans abréviations, précisant objectifs, résultats, conclusions.
Sous le résumé, donner 3 à 10 mots clés permettant de faciliter l’indexation de l’article.
- texte: il doit comprendre 12 pages dactylographiées maximum, au format 21 × 29,7, en respectant un double interligne, par page de 25 lignes, 60 signes par ligne, recto seulement;
- remerciements: toute contribution appelant un remerciement sera signalée en annexe après le texte.

- RÉFÉRENCES
Dans le texte, les références sont indiquées selon la méthode nom(s), date. Dans le cas où la référence comporte plusieurs auteurs, seul sera indiqué le nom du 1er suivi de et al. Ex.: (DURAND et al., 1981).
En fin d’article, les références complètes seront regroupées par ordre alphabétique et, pour un même auteur, par ordre chronologique, les lettres, a, b, c, différenciant dans le texte les articles parus dans la même année. Indiquer tous les auteurs lorsqu’il y en a 6 ou moins. Au-delà de 6, indiquer les trois premiers suivis de et al.
Les références doivent indiquer dans l’ordre:
- Articles de périodique:
 Exemple:
- Articles de livre:
 Exemple:
- Livre:
 Exemple:

- ILLUSTRATIONS
Elles seront fournies sur pages séparées, accompagnées de légendes. Pour les tableaux ou figures produits sans modification, indiquer les références exactes (auteurs, titre de l’ouvrage, éditeur...), afin d’en permettre la demande de reproduction.
Tous les documents placés dans le texte seront numérotés en chiffres arabes (figure 2) et les tableaux en chiffres romains (Tableau I) et leur place d’insertion dans le texte doit être indiquée sur le manuscrit. Veuillez indiquer au dos: le nom de l’auteur, le numéro de la figure, le haut de la figure indiqué par une flèche.

Tout ce qui concerne la rédaction doit être adressé à:
Docteur C.-J. Madelin, Rédactrice en chef, 74, rue de Lille, 75007 Paris, France
Troubles cognitifs dans la myopathie de Duchenne de Boulogne

C.-L. GÉRARD*, D.-G. BRUGEL**

* Service de Médecine de Rééducation, Hôpital Robert-Debré, 48, bd Sérurier, 75019 Paris, France.
** Service de Rééducation fonctionnelle polyvalente infantile, Hôpital Saint-Maurice, 14, rue du Val d'Osne, 94410 Saint-Maurice, France.

Les auteurs reviennent ici la littérature concernant l'abord neuropsychologique de la maladie de Duchenne. Les données récentes sont en faveur d'un déficit précoce partiellement réversible lors de l'évaluation des capacités verbales. L'étiologie de ces troubles cognitifs est multifactorielle : facteurs neurologiques, facteurs psychologiques secondaires aux handicaps, facteurs socioculturels.

Mots clés : Dystrophie musculaire progressive,
Neuropsychologique,
Difficultés scolaires,
Troubles du langage.

Neuropsychological disorders in the progressive muscular dystrophy (Duchenne's type)

The authors have reviewed the literature concerning the neuropsychological studies of the progressive muscular dystrophy. Recent data argue for an early impairment of the verbal abilities which improves with age. The causes of these cognitive deficits are multiple; there are neurological factors, environmental factors, psychodynamic factors.

Key words : Progressive muscular dystrophy,
Neuropsychology language disorders.
L'étude des troubles cognitifs associés aux maladies chroniques constitue un domaine récent de la neuropsychologie infantile ; celle-ci s'était longtemps limitée aux problèmes des troubles spécifiques du développement et aux conséquences sur le développement des lésions cérébrales acquises. Le principal but de ces études est d'améliorer les programmes thérapeutiques, de façon à accompagner les progrès obtenus médicalement plus une meilleure adaptation sociale et scolaire de ces enfants. Mais on retrouve souvent deux types de difficultés méthodologiques qui sont communes à l'ensemble de ces pathologies chroniques (Berg et Linton, 1989) :

- difficultés à étudier les facteurs cognitifs de manière indépendante des handicaps ; ceci est particulièrement vrai lorsque un handicap moteur existe ; c'est aussi vrai pour des maladies telles que l'insuffisance rénale où la fatigabilité des patients rend difficile l'évaluation réelle du potentiel de l'enfant ;

- difficultés à analyser les facteurs étiologiques des troubles cognitifs. La constatation de troubles cognitifs chez un enfant ayant une maladie chronique pose toujours le problème de savoir si ceux-ci sont la conséquence :

 - d'un dysfonctionnement primaire cérébral, dans le cadre d'une atteinte multisystémique ;

 - d'un dysfonctionnement cérébral secondaire, lié soit à la dysfonction de l'organe impliqué dans la maladie chronique soit aux traitements ;

 - de facteurs socioculturels éventuellement liés à la maladie chronique ;

 - des troubles émotionnels, scolaires, entraînés par la maladie chronique.

Les maladies neuromusculaires n'échappent pas à ces problèmes méthodologiques. La littérature, abondante dans ce domaine, s'est surtout intéressée au cas de la maladie de Duchenne de Boulogne ou dystrophie musculaire de Duchenne (DMD). Cette littérature est caractérisée par l'absence de consensus concernant la réalité, l'importance et le déterminisme de ces troubles cognitifs.

HISTORIQUE

On peut reconnaître quatre grandes périodes dans l'évolution des idées sur les aspects neuropsychologiques liés à la DMD. Dès les premières descriptions, qui forment la période historique, on a reconnu sur des données cliniques que, dans un certain nombre de cas, la maladie s'accompagnait d'un retard mental ; c'était probablement le cas de 5 des 13 sujets décrits par Duchenne (Duchenne, 1872). Dans les années 50, la mesure des quotients intellectuels (QI) de sujets ayant une DMD a été pratiquée de manière systématique, mais on a, d'embellie, soit nié qu'il y avait une fréquence plus élevée de bas QI, soit mis en avant, lorsque de tels déficits étaient évidents, le rôle des facteurs d'environnement socio-économiques ou du handicap moteur. Dans une troisième période, entre 1960 et 1980, les études ont systématiquement insisté sur la fréquence du retard mental associé à la DMD et ont vu là la démonstration d'une atteinte concomitante du système nerveux central à déterminisme génétique. Dans une quatrième période, de 1980 à nos jours, on assiste à un affinement des techniques neuropsychologiques utilisées, permettant de discuter de manière plus nuancée le déterminisme des troubles observés et surtout de décrire mieux les aspects fonctionnels de ces déficits.

DONNÉES PSYCHOMÉTRIQUES

En fait, dans la majorité des études publiées, ce que l'on a appelé l'abord neuropsychologique de la DMD a utilisé, comme donnée de base, la mesure de quotients intellectuels. Les quotients moyens de populations comportant entre 20 et 70 sujets ayant une DMD ont été régulièrement retrouvés à une déviation standard au moins en dessous de la moyenne de la population normale ; ce quotient moyen se situant en général entre 80 et 87 (Allen et Rodgin, 1960 ; Worden et Vignos, 1962 ; Zellweger et Hanson, 1967 ; Cohen et al., 1968 ; Prosser et al., 1969 ; Kozicka et al., 1971 ; Marsh et Mun-sat, 1974 ; Florok et Karolak, 1977 ; Karagan, 1979 ; Mearig, 1979 ; Dubowitz, 1965). Pour beaucoup de ces auteurs, ceci correspondait à un déplacement vers les zones de QI bas de l'ensemble de la population des enfants ayant une DMD (Karagan, 1979), et apparaissait spécifique, puisqu'on n'observait pas un tel déplacement dans des populations « contrôles » de sujets ayant un diabète (Worden, 1962), des maladies comportant un handicap moteur tels que la « amyotonia congenita » (Kozicka et al., 1971) ou l'amyotrophie spinale.

Suivant les études, la proportion d'enfants ayant une DMD et un retard mental significatif variait de 20 à 30 %. En fait, l'utilisation de ces résultats pour inférer que la DMD serait associée à une plus grande fréquence de retards mentaux a été critiquée :

- parce que beaucoup de ces études ne pouvaient se prévaloir d'un recrutement représentatif de l'ensemble des DMD ;

- parce qu'elles utilisaient des populations couvrant une large zone d'âges, et donc faisaient appel à des tests psychométriques multiples, non forcément équivalents dans leur sensibilité ;

- parce que beaucoup ne pouvaient se prévaloir de mesurer le potentiel de façon indépendante du déficit moteur.

Ainsi Mearig (1979), en corrigeant certains de ces problèmes méthodologiques, n'a pas retrouvé de tels déficits psychométriques.

FACTEURS ÉTIOLIQUES

Les multiples données, mêmes contestées, concernant l'existence de dysfonctionnements cognitifs associés à la DMD ont été utilisées pour démontrer l'existence de dysfonctionnements cérébraux associés à la maladie. Les arguments pour une telle théorie ont surtout été indirects. Ainsi, ces déficits ne pouvaient pas être secondaires au handicap moteur et social progressif, puisque
le déficit cognitif n’était corrélé ni à l’âge ni à l’importance du déficit moteur (Karagan, 1979). Cependant, aucune étude longitudinale n’a été vraiment menée pour mettre en rapport QI, déficit moteur et variables socio-économiques pour montrer une telle indépendance, la plupart des études étant transversales. Dubowitz (1965) a insisté sur le fait que le retard mental, lorsqu’il existe, est antérieur à l’expression du déficit moteur. Les variables socio-économiques jouent sur le quotient intellectuel, mais, dans une même fratrie, les sujets atteints ont des quotients en moyenne inférieurs aux sujets non atteints (Prosser et al., 1969). Cohen et al. (1968) et Ogasawara (1989) ont montré respectivement sur 39 familles et 41 familles, où plusieurs sujets étaient atteints, une haute concordance des QI des sujets ayant une DMD. Ce fait pour ces auteurs est un argument qui, lié au caractère précoce de l’atteinte cognitive, plaide en faveur de l’existence d’un dysfonctionnement cérébral génétiquement déterminé. Cohen a ainsi proposé quatre modèles possibles de liaisons génétiques entre DMD et déficit mental : mais il n’existe aucun argument définitif permettant de privilégier l’un ou l’autre de ces modèles.

PROFILS NEUROPSYCHOLOGIQUES

Les difficultés à obtenir une vision homogène des problèmes neuropsychologiques des DMD proviennent de l’utilisation inadéquate de ces données psychométriques. Les raisonnements neuropsychologiques ne peuvent en effet se fonder sur des données aussi globales, qui sont influencées tant par des facteurs d’environnement que par des facteurs neurologiques et comportementaux. Les tests d’intelligence ne sont qu’un préalable à l’étude neuropsychologique, qui ne peut se fonder que sur l’établissement de profils spécifiques et la confrontation de ceux-ci à tous les facteurs qui peuvent influer sur le développement cognitif.

On s’est ainsi intéressé à l’existence fréquente d’une différence entre les quotients verbaux et de performances ; ceci était d’autant plus intéressant que celle-ci allait dans le sens d’un déficit plus important aux échelles verbales de Wechsler, qui ne sont pas influencées par les déficits moteurs, comme le sont les échelles de performances. Cette constatation a été faite premièrement par Zellweger et Hanson (1967), mais n’a pas été retrouvée par d’autres auteurs tels que Prosser et al (1969). Marsh et Munsat (1974) et ensuite Karagan et Zellweger (1978) ont montré qu’une telle dissociation se retrouvait chez les enfants les plus jeunes et disparaissait chez les plus âgés, en raison des moins bons scores que ceux-ci obtenant aux échelles de performances lorsque le déficit moteur progressait.

Sollée et al. (1985) ont étudié avec une large batterie neuropsychologique deux groupes d’âges d’enfants ayant une DMD. Ils ont montré que les déficits cognitifs n’étaient ni globaux ni fixes ; ainsi les enfants les plus jeunes avaient à la fois des déficits langagiers et attentionnels qui s’amendaient largement avec l’âge. Kaplan et al. (1986), Smith et al. (1990) insistent sur le fait que ces déficits cognitifs précoces sont suffisamment importants pour être mis en évidence par les échelles de développement précoces et peuvent être, notamment dans les familles à risque génétique, une manière d’amener au diagnostic avant que les troubles musculaires soient clairement perceptibles. Pour Dorman et al. (1988), les déficits verbaux expressifs se corrigent avec l’âge, mais les myopathies âgés présentent, dans une proportion de cas importante, des troubles linguistiques réalisant des profils neuropsychologiques similaires à ceux que l’on retrouve dans les cas de troubles sèvères des apprentissages développementaux.

D’autres auteurs ont affirmé que les enfants myopathes souffraient de difficultés mnésiques à court et moyen terme, et que l’investigation de la mémoire serait une manière plus spécifique d’aborder les relations entre myopathie et cerveau (Whelan, 1987 ; Anderson et al., 1988). Peu d’études ont été menées de manière contrôlée sur les relations entre cognition et facteurs psychologiques. En utilisant des échelles de comportements remplies par les parents et les enseignants, Lebowitz et Dubowitz (1981) d’une part, et Solee et al. (1985), d’autre part, ont montré que les scores de déviations comportementales étaient plus élevés pour les enfants myopathes que dans les populations normales et notamment chez les sujets les plus jeunes, chez qui ils retrouvaient les troubles cognitifs les plus marqués. Mearig (1979) a montré, qu’à côté de l’explication neurologique habituellement apportée pour rendre compte des déficits cognitifs associés à la DMD, il existe des modèles psychodynamiques qui sont souvent sous-estimés et qui impliquent : les perturbations de la formation de l’image du corps au moment où le déficit moteur s’installe, la limitation croissante des possibilités d’exploration de l’environnement, à un moment où celle-ci est nécessaire pour que l’enfant puisse se construire des outils de généralisation, la nécessité de penser sans se projeter dans l’avenir. En prenant appui sur les théories psychanalytiques, qui lient les capacités de symbolisation à l’intégrité du Moi, et les théories piagettiennes, qui insistent sur l’importance de l’action à une phase précoce du développement pour la construction des outils de pensée, on peut trouver bien des facteurs dans l’histoire naturelle de la DMD qui vont limiter le développement cognitif et notamment les capacités verbales élaborées de ces enfants. Mais les progrès de la psychiatrie développementale montrent
combien les modèles de liaison entre facteurs psychologiques, cognitifs et biologiques sont complexes et ne peuvent se résumer à des relations simplement linéaires (Dugas et Gérard, 1990).

PERSPECTIVES

Devant ce tableau des données de la littérature, on ne peut que souhaiter une sophistication des investigations neuropsychologiques appliquées à la DMD ; la simple étude des QI a montré ses limites. Mais il faut se demander d’abord dans quel but il faut fournir cet effort. Avec les progrès de l’imagerie cérébrale, il n’est pas raisonnable de penser que la neuropsychologie serait un moyen de révéler des lésions du système nerveux central qui ne seraient pas évidentes avec des investigations plus directes de l’état du système nerveux central. Ce point, on peut cependant souligner que les données neuropsychologiques de la DMD n’ont pas été confrontées encore à celles de l’imagerie cérébrale fonctionnelle (potentiels évoqués cognitifs, mesures des débits sanguins cérébraux) comme cela a été le cas dans d’autres domaines de la neuropsychologie infantile.

La neuropsychologie est avant tout un moyen de description fonctionnelle : — permettant de mieux construire les projets réadaptatifs et d’intégration scolaire ; — permettant aussi de mieux décrire les relations qui, dans une maladie chronique, peuvent se développer entre les déficits fonctionnels, les outils de connaissance, de communication et les états émotionnels. La DMD, par sa dynamique évolutive particulière, permet d’aborder ces relations de façon paradigmatique, puisque, chez un même enfant, on peut étudier dans le temps l’effet sur l’ensemble de ces facteurs de la progression du déficit moteur. De telles perspectives ne peuvent exister que si un même soin est apporté dans la recherche de moyens reproductibles d’évaluation de ces différentes dimensions.

RÉFÉRENCES

DUCHENNE G.B. (1872). De l’électrisation localisée et de son application à la pathologie et à la thérapeutique, 3e éd. (Baillière), Paris.

Laterality in benign partial epilepsy of childhood with rolandic spikes: I: Hand preference and skill

*Neuropediatric Unit, Department of Pediatrics, Hospital de Cruces, Bilbao (Vizcaya), Spain.
**Clinical Psychologist.

Hand laterality and skill were studied in 89 patients with benign partial epilepsy of childhood with rolandic spikes, and compared to 85 controls of the same age. Main parameters used were hand preference for writing, the laterality quotient (Olfield, 1971), and hand performance at the square-tracing task (Bishop, 1980). A raised incidence of left handedness was found in the epileptic group, but only for females. The laterality quotient of males was related to age in both groups, and was not different in the epileptic or control populations. Hand performance at motor tasks was a function of age for both sexes, and showed no differences between groups. Prior developmental speech delay was related to poor performance of the non preferred hand along childhood, to a similar degree in both groups. It is concluded that anomalous dominance is not related to benign partial epilepsy to a larger degree than in the normal population.

Key words: Benign partial epilepsy, Hand laterality.
Latéralité dans l’épilepsie partielle de l’enfance avec pointes rolandiques : I. Adresse et préférence manuelle

Nous avons étudié la latéralité et l’adresse manuelle de 89 patients avec épilepsie partielle bénigne de l’enfance avec pointes rolandiques, en les comparant avec 85 contrôles du même âge. Les paramètres fondamentaux utilisés ont été : préférence manuelle pour l’écriture, quotient de latéralité (Oldfield, 1971), et adresse manuelle pour tracer un carré (Bishop, 1980). Nous avons remarqué une incidence augmentée de gaucherie dans le groupe d’épileptiques, mais seulement chez les femmes. Le quotient de latéralité chez les hommes était corrélé à l’âge chez les patients épileptiques comme chez les contrôles. L’adresse manuelle pour les activités motrices changeait en fonction de l’âge parmi les deux sexes indépendamment du groupe. Le retard d’apparition du langage était associé au mauvais rendement de la main non-dominante pendant l’enfance chez les deux groupes. Nous avons ainsi conclu que la dominance anormale n’est pas supérieure chez les patients avec épilepsie partielle bénigne que dans le reste de la population.

Mots clés : Épilepsie partielle bénigne, Adresse manuelle.

Studies of hand laterality have drawn a great deal of attention. For children, as opposed to adults, the process of brain maturation must be considered when assessing hand preference. Lack of a clearly dominant hand may be due to immaturity of cerebral lateralization, or of motor or cognitive development. As put forward by Denckla (1973), not only the establishment of the preferred hand’s superiority at performing motor tasks, but also the rapid improvement of the non preferred hand’s skill, in young children, must be regarded as a feature of cerebral maturation. From another point of view, performance of the non preferred hand has been signaled as a possible marker of a pathological shift in laterality. According to Bishop (1984), « it seems plausible that quite mild impairment on one side might shift the balance of skill in favour of the previously non-preferred hand, and so result in a transfer of hand preference ». Assuming the likelihood of a unilateral brain abnormality occurring equally in the right and left hemisphere, the number of right handers who would shift to left would be quite larger than the opposite, which in turn will lead to a raised incidence of left handers. In fact, a raised incidence of left or mixed handedness has been reported among mentally retarded, epilepsy, dyslexia and other disorders.

Based on the pathological study of brains of individuals with developmental dyslexia, Geschwind and Galaburda (1987) have suggested a relationship between this disorder and anomalous dominance, as well as with benign partial epilepsy with rolandic spikes (BPE-RS). A disruption of neuronal migration in left hemisphere favoring the right’s early development, at a certain period of the ontogenesis, could be responsible for both. They hypothesized that a left hemisphere focus would be quite more frequent than a right one, in these cases. Other studies on benign partial epilepsy (Piccirilli et al., 1988) have also suggested that a focal paroxysm, though unrelated to an organic lesion, may disrupt cognitive functioning in a developing brain. However, the exact incidence of learning disabilities in BPE-RS is not known yet. Gross differences, as compared to the general population, have not been reported, and the benignity of the disease regarding control of seizures and absences of cognitive impairment, has been widely assumed (Aicardi, 1986).

BPE-RS provides an excellent opportunity to study the influence of an epileptic focus, that by definition occurs upon a structurally undisturbed substrate, over laterality, hand skill and school performance. The present study was designed to test the hypothesis of anomalous dominance being more frequently present among BPE-RS patients than within the normal population. According to that assumption, a left brain hemisphere epileptic focus should be related to learning disabilities. In the present paper (Part I), results of testing the first hypothesis will be reported. In the following paper (Part II), the relationship of brain hemisphere distribution of epileptic foci to hand laterality and school performance, will be discussed.

PATIENTS AND METHODS

Probands were selected from children referred to the Neuropediatric unit, at our center, according to the following criteria : 1) Presence of benign partial epilepsy with rolandic spikes (BPE-RS), with typical features on EEG and clinical grounds ; cases with complicated or atypical forms (very early onset, continuous paroxysmal discharges during sleep, association with other types of epileptic seizures, etc.) were excluded. 2) Absence of any evident or presumed SNC lesion. 3) Normal intel-
lectual level as stated by parents and teachers, and neurological examination. 4) Age 7 years or older, at the time of the study.

89 patients, 7-14 years old, were thus selected along a one-year period of time. Patients were either without treatment or under carbamazepine therapy at 10-20 mg/kg/day. EEG’s had been performed every 3 or 6 months in all cases. Follow-up prior to the study was one year or more in most cases (82.3 %). The parameters studied were: 1) Hand preference for writing and drawing. 2) Laterality quotient (L.Q.) based on the 10-item Edinburgh Handedness Inventory (Oldfield, 1971). 3) Hand performance with the square-tracing task, as proposed by Bishop (1980). 4) Brain hemisphere distribution of epileptic foci (left, right, bilateral) in at least 80 % of the EEG’s performed during wakefulness. 5) For the purposes of this study, developmental dyslexia was tested in a very simplified form by asking the children to write some sentences read aloud by the tester. Sentences had a different degree of difficulty according to each school grade, and were the same for every child in the same school grade. 6) Through a questionnaire, the mother was asked if the child had learned to speak at a slower pace than other children, with just two possible answers: yes/no. 7) Questions to the mother, related to the child’s school performance were as follows: a) The child’s achievement at school is above/equal/below the medium achievement level of his/her classmates. b) Is the child attending a school class below his/her age because of poor school achievement? c) Is the child attending a remedial educational program besides his/her regular classes? d) Have the teachers repeatedly complained of the child’s hyperactivity? e) Has the child been previously diagnosed of dyslexia?

The patients’ visit to the clinic was the regular programmed one for epilepsy control purposes. In the same session, the tests (L.Q., square-tracing task and writing) were administered individually to the children by the medical officer. The mother accompanied the patient and was interviewed once the child had finished the tasks. As a whole, time spent with each patient for the purposes of this study was about 20-30 minutes.

The control group was drawn from a school near the hospital, whose socio-economic level is the same than that of most patients attending our center. Teachers were asked to select children with an average achievement level as compared to his/her classmates, avoiding those with very high or very low performances. 85 children, 7-14 years old, were interviewed on the school grounds by one of the authors (Romo J) during the same period of time than the patients described.

Hand preference, L.Q. and performance at the square-tracing task were assessed by the same methods than probands. A questionnaire was sent to the parents asking a few questions not related to this study and the following one: did the child learn to speak at a slower pace than other children? (yes/no).

Scoring of hand performance at the square-tracing task was done by a trained psychologist (García-Nieto) without knowing whether the tests belonged to children in the epileptic or control groups. Then, she was asked to classify the probands’ pieces of writing into « dyslexic » or non dyslexic categories, blind to other data except the child’s school grade. Those who performed more than one error like those usually found in dyslexia, in each of the two sentences written, were considered as « dyslexics ». Disorthography (changing y by b, omitting the silent spanish h, etc.) was not considered as a dyslexic sign.

Statistical methods used were based on variance analysis, x square test, with Yates correction, and Fisher’s exact test, when appropriate. To describe numerical values in the text, medium ± 1 SD is used. Proband’s hand preference, L.Q. and performance at the square-tracing task, were compared with those of controls, each sex separately. Secondly (Part II), data analysis was directed to search for any association between the hemisphere distribution of epileptic foci and hand preference and performance, as well as with school achievement.

RESULTS

54 male patients with BPE-RS (age: 10.1 ± 0.3 years old) were compared to 37 control boys (age: 9.8 ± 0.3 years old), and 35 female patients with the same disorder (age: 9.9 ± 0.3 years old) were compared to 48 control girls (age: 10.1 ± 0.3 years old).

Left hand preference for writing and drawing, in each group (BPE-RS, Control), was not related to age or sex. Incidence of left-handedness was twice as large in the epileptic group (10.1 %) than controls (4.7 %), though not significative. Males showed the same rate of left-handedness in both groups (7.4 % and 8.1 %, respectively), but regarding females, 14.2 % of patients with BPE-RS were left handed, compared to a 2 % incidence in control girls (p < 0.05). Excluding those patients in the epileptic group, with a school achievement above or below the medium level of the class (Table I), so as

Table I

<table>
<thead>
<tr>
<th>School level</th>
<th>Male</th>
<th>Female</th>
<th>Controls</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>(2/18)</td>
<td>11.1 %</td>
<td>(2/17)</td>
<td>11.7 %</td>
<td>(3/37)</td>
</tr>
<tr>
<td>Medium</td>
<td>(1/23)</td>
<td>4.3 %</td>
<td>(3/15)</td>
<td>20 %</td>
<td>—</td>
</tr>
<tr>
<td>Low</td>
<td>(1/13)</td>
<td>7.6 %</td>
<td>(0/3)</td>
<td>0</td>
<td>—</td>
</tr>
</tbody>
</table>

79
Table II

Laterality quotient

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
<th>Controls</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left handed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right handed</td>
<td>85.3 ± 2.7</td>
<td>84.9 ± 5.1</td>
<td>88.2 ± 2.6</td>
<td>93.6 ± 1.3</td>
</tr>
<tr>
<td>School achievement</td>
<td>80.5 ± 4.6</td>
<td>92.5 ± 4.09</td>
<td>30 ± 31</td>
<td>93.6 ± 1.3</td>
</tr>
<tr>
<td></td>
<td>50 ± 14.4</td>
<td>91 ± 3.5</td>
<td>88.2 ± 38</td>
<td>93.6 ± 1.3</td>
</tr>
<tr>
<td>L.Q. < 0</td>
<td>83.6 ± 3.1</td>
<td>86.5 ± 3.9</td>
<td>86.8 ± 2.9</td>
<td>91.6 ± 2.3</td>
</tr>
<tr>
<td>L.Q. ≥ 0</td>
<td>80.5 ± 4.6</td>
<td>86.9 ± 6.7</td>
<td>80 ± 20</td>
<td>91.6 ± 2.3</td>
</tr>
<tr>
<td>School achievement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table III

Developmental speech delay

<table>
<thead>
<tr>
<th></th>
<th>BPE-RS</th>
<th>Controls</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal speech delay</td>
<td>42</td>
<td>33</td>
<td>32</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>12 (22.2 %)</td>
<td>2 (5.7 %)</td>
<td>5 (13.5 %)</td>
<td>3 (6.2 %)</td>
</tr>
<tr>
<td>Speech delay with medium</td>
<td>5/23 (21.7 %)</td>
<td>1/15 (6.6 %)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>school achievement**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To make it more comparable with the control group (which by definition had a medium achievement level), we could see that female predominance of left-handers in the epileptic group became more evident (20% versus 2%, \(p = 0.03 \)).

The laterality quotient was related to age, but only for males: right-handed boys in both groups showed a significant trend to increase their L.Q.s with increasing age \((p < 0.05) \). Females did not show any relation between L.Q. and age, since it was already near the maximum value ever since young age. At first glance, the L.Q. of BPE-RS patients \((70.7 ± 5.3) \) seemed to be significantly lower than that of controls \((85.6 ± 3.3, p < 0.01) \), but it was due to the larger presence of boys in the former, and also to the larger number of left-handed females. When sex and hand preference were taken into account, the L.Q. of epileptics was not really different than that of controls, not even when school achievement level was taken into account (Table II). Lack of differences between groups was also evident if, instead of hand preference for writing, we consider as right handed those with a L.Q. \(≥ 0 \).

Number of errors performed with each hand, at the square-tracing task, is a function of age, for both groups and both sexes \((p < 0.01) \). Neither hand’s (dominant and non-dominant) performance was related to L.Q., left handedness or sex. BPE-RS patients did not perform worse with either hand than controls, not even when school achievement level was taken into account (as a matter of fact, they performed better, at any age).

A clear cut performance level with either hand could be established between children younger than 11 years old and those with 11 or more years of age. At both age levels, we selected the 20% of cases with more errors of the non-dominant hand. Percentile of number of errors were calculated separately for BPE-RS and control cases. We could not find a raised incidence of left handedness within these populations. The L.Q. was not different either. When both hands’ performance were taken into account, 10.5% (9 out of 85) of controls and 8.9% (8 out of 89) BPE-RS patients were clumsy with both hands (number of errors above the 80th percentile of each hand).

It was interesting to see if among those without bilateral clumsiness, discrepancies between hands could be found. Since percentiles had been drawn for each hand separately, it was expected that the preferred hand score was i.e. at the 10th percentile, the non preferred hand score could be at some point around the 90th percentile \(± 1 SD \) for that hand. Differences between hands were thus found, equally in control and BPE-RS patients. The preferred hand showed a proficiency \(> 1 SD \) better than the non preferred hand in 5.8% \((5/85) \) of controls and 10.1% \((9/89) \) BPE-RS patients (not significant). A larger difference between hands \((> 2 SD) \) was found in just one case (control). The opposite situation also occurred: the preferred hand score was \(> 1 SD \) worse than expected, as judged by the non preferred hand’s, in 4.7% \((4/85) \) of controls and 4.4% \((4/89) \) of BPE-RS patients. There was no sex preference for this distribution, nor was it related to age, left handedness or L.Q.

Developmental speech delay in infancy and early childhood was recorded in 18.6% of BPE-RS patients and 9.4% of controls (not significant). Percentages remained the same when school achievement was considered. Males were more prone to be late speakers than girls, as shown in Table III, which was more evident within the epileptic group taken as a whole \((p = 0.03) \). Left handedness incidence and L.Q. were not different among late speakers.
Speech delay in early childhood was associated with a worse performance of the non preferred hand along later childhood, both in the epileptic and control groups (p < 0.05). When patients with extreme clumsiness of the non preferred hand (number of errors above the 80th percentile) were excluded, speech delay incidence remained higher in epileptic boys (9/43, 21 %) than control males (0/26, p = 0.02), while females showed a similar rate in both groups (1/29, 3.4 % of BPE-RS ; 3/43, 6.9 % of controls). So it seems that speech delay, although related to a poor performance of the non dominant hand, is not associated with extreme clumsiness in epileptic boys, as it happens to control males.

DISCUSSION

According to our data, the L.Q. of right handed males increased with age, in both control and epileptic cases, while female L.Q. was already near the maximum values ever since young age. As tested by the Edinburgh Handedness Inventory, maturation of laterality is achieved earlier by females than males. Our 7-14 years old boys and girls were equally familiar with all 10 items examined. Since both control and epileptic patients were tested during the same one year period of time, social pressures against the use of the left hand cannot be accounted for the lack of L.Q. differences between groups. We don’t believe either that in our country a social pressure exists for females, leaving males free to use the left hand as they wish.

Annett (1985) proposed a genetic factor, a single dominant allele (RS) which, when present, favours left hemisphere representation of speech and incidentally shifts the mean distribution of hand differences in skill, toward right hand superiority. Annett argues that the right shift is expressed more strongly in females than in males. Perhaps, the price to be paid for female rapid speech development is the relative inhibition of right hemisphere visuospatial skills. After an extended review of the literature, Beaton (1985) finds it « conceivable that lateralization in younger males and females proceeds, if it changes at all, at different rates and/or from different starting point ».

Geschwind and Galaburda (1987) suggested that cerebral dominance is determined primarily by brain anatomical asymmetry, which in turn might be modified by environmental factors such as male sex hormones during pregnancy. This would account for a raised incidence of left handedness among males, but it is not known if it would account also for a slower rate of laterality maturation.

An alternative explanation would be a slower motor development for boys than for girls. Based on Annett’s evidence, in the early ’70s, most authors agree that strength of hand preference and relative skill of the two hands are associated phenomena (Rudel et al., 1984; Bishop, 1984). Motor maturation, as tested by Denckla (1973, 1974) seems to be slower in boys, which leads to the theory that girls might develop adequate interhemispheric connections at an early age. Even during infancy, Touwen (1976) found that while boys develop somewhat faster in gross motor areas, the girls appear to be more forward in functional areas that require more subtle motor activities, the difference being very small between sexes. Using a simple but quite useful sensorimotor test, Huttonlocher (1990) found also small but statistically significant differences between boys and girls at three years of age, but female advantage was no longer evident at age five.

So it seems that by 7 years of age, which is the lowest age of our cases, differences between sexes, at motor tasks, should be almost inexistent. Motor development cannot be accounted for the age-related L.Q. of males. In support of this assertion, either hand’s performance at the square-tracing task did not show differences between sexes, the proficiency in our study, of both genders getting better with age at the same rate. Motor development may account for a raised incidence of non-right handedness in very clumsy children, as has been reported (Bishop, 1980), but not for a slower pace in defining the L.Q. of males as compared to females, within the normal population.

Developmental speech delay, as reported by the families of our cases, may reflect a wide range of circumstances: a normal variant, a maturational lag, a language disorder or an undetected cognitive impairment. They probably constitute a heterogeneous group. Nevertheless, they performed worse at the square-tracing task, both in the epileptic and control groups. The speech problem was no longer evident by the time of the study, in most cases. Poor hand performance in these cases was striking, since it showed no relation to other conditions associated with speech delay, such as school failure or presumed dyslexia, among BPE-RS patients, as mentioned in the following paper.

A relationship between language impairment and poor performance at certain motor tasks has been reported (Bishop and Edmundson, 1987; Kinsbourne, 1989), and sensorimotor clumsiness at young ages seems to be related to low school achievement later on (Huttonlocher, 1990). According to our data, not only a language impairment but even a simple, not complicated, speech maturational lag must be associated with poor motor coordination, as measured by the square-tracing task, and thus it becomes a risk factor for later low school performance.

A raised incidence of left-handedness is expected in any population with brain lesions. We found such event in BPE-RS females as compared to controls. All five girls had a normal speech development, L.Q.s ranging from + 20 to – 66, and a high or medium school achievement level as compared to their classmates. Number of errors performed with the non preferred hand were between the 10th and 50th percentile (very good performance) in 4 cases and one above the 80th (not significantly). 2 out of 5 suffered dyslexia (not significant). So it seems at first glance, that the raised incidence of female left handers, as compared to controls, is not due to a pathological shift of hand laterality in BPE-RS patients. The only case within this group with an extreme clumsiness was also the only one with a L.Q. above – 50 (+ 20); she had been diagnosed of dyslexia prior
to the study, which was still evident in the writing test performed at 13.7 years of age. She attended a remedial educational program, and was placed at a school grade one-year below than what would have been normal for her age. If we assume that this case is a pathological left hander, then BPE-RS was not related to it since the epileptic focus had been on the right hemisphere ever since epilepsy was diagnosed. Other data taken from this study, that prove an absence of a pathological shift of hand preference in BPE-RS patients, were: 1) The L.Q. was not different in BPE-RS patients than controls, once sex was taken into account. 2) Performance with the non preferred hand was not worse; in fact, it was better. 3) A relationship between non preferred hand performance and left handedness or L.Q. was not found, as would be expected in any normal population without unilateral brain lesions. 4) Among the 20% of cases with more errors of the non preferred hand, who are what Bishop (1980) called the «target group», we could not find a raised incidence of left handedness or a lower L.Q. 5) The incidence of bilateral clumsiness was similar in epileptics and controls. 6) Among those without bilateral clumsiness, large discrepancies between each hand’s performance were found in the same proportion within the epileptic and control groups. 7) Speech delay was related to poor performance of the non dominant hand in both groups; BPE-RS late speakers did not perform worse than controls with the same problem. Thus, it may be concluded that an anomalous dominance does not seem to be represented in BPE-RS patients to a larger degree than in the normal population. Besides, we found that young males, in both groups, show a slower rate of brain lateralization than females, as measured by the Edinburgh Handedness Inventory, a finding that seems to be independent of speech development in early childhood or hand skill in later childhood.

REFERENCES

AICARDI J. (1956). Epilepsy in children, (Raven Press), New York, 413.

Laterality in benign partial epilepsy of childhood with rolandic spikes: II. Focus hemisphere distribution, hand preference and school performance

*Neuropediatric Unit, Department of Pediatrics, Hospital de Cruces, Bilbao (Vizcaya), Spain.
**Clinical Psychologist.

The relationship of brain hemisphere distribution of epileptic foci, with hand laterality and school performance, was studied in 89 patients with benign partial epilepsy of childhood with rolandic spikes, and compared to 85 controls of the same age. Main parameters used were hand preference for writing, the laterality quotient (Oldfield, 1971), hand performance at the square-tracing task (Bishop, 1980), school achievement level as compared to their classmates, impairment of written language, and recorded speech delay in early childhood. Epileptic foci distribution was not related to age, sex or hand preference. Instead of left hemisphere focus, it was bilateral rolandic spikes foci that showed a relationship to the laterality quotient, previous speech delay and signs suggestive of dyslexia. The proficiency of the non-preferred hand and school achievement were not directly related to hemisphere foci distribution, but to previous speech delay or dyslexia.

Key words: Benign partial epilepsy,
Laterality,
Speech delay,
Learning disabilities.
A relationship between benign partial epilepsy of childhood with rolandic Spikes (BPE-RS) and language disabilities has been hypothesized, providing the epileptic focus was located on the left hemisphere (Geschwind and Galaburda, 1987). The association of language disorders and left handedness has also been discussed for a long time (Beaton 1985, Kingsbourne 1989).

Although in BPE-RS, focal paroxysmal discharges are not related to a subjacent organic lesion, they could disrupt cognitive functioning in a developing brain (Piccirilli et al., 1988). Thus it would be likely to find, among these patients, a raised incidence of left handedness and language impairment. However, the exact incidence of both, in this type of epilepsy, is not known. Gross differences, as compared to the general population, have not been noticed by most authors, and the relationship, if any, between such common disturbances and EEG pattern is difficult to establish (Aicardi, 1986).

This study was designed to test the hypothesis of an anomalous dominance being more frequently present among BPE-RS patients than within the normal population. According to that assumption, a left brain hemisphere focus should be related to learning disabilities. Results about hand preference and skill, as compared to controls, have been reported in the previous paper (Part I). Based on hand preference, laterality quotient (LQ) and performance of the non preferred hand, we concluded that an anomalous dominance was not likely to occur in BPE-RS, at least to a larger degree than in the normal population. In the present paper (Part II), the possible relationship of brain hemisphere distribution of epileptic focus and hand laterality, as well as school performance in the same sample of children, will be discussed.

PATIENTS AND METHODS

These have already been extensively described in the previous paper (Part I). In short, the proband’s selection criteria were: 1) Presence of benign partial epilepsy with rolandic spikes (BPE-RS), with typical features on EEG and clinical grounds (complicated or atypical forms were excluded). 2) Absence of any evident or presumed SNC lesion. 3) Normal intellectual level. 4) Age 7 years or older, at the time of the study. The parameters studied were: 1) Hand preference for writing and drawing, 2) Laterality quotient (LQ) based on the 10-item Edinburgh handedness inventory (Oldfield, 1971). 3) Hand performance with the square-tracing task, as proposed by Bishop (1980). 4) Brain hemisphere distribution of epileptic foci (left, right, bilateral) in at least 80% of the EEGs performed during wakefulness. 5) A writing test searching for signs suggestive of dyslexia. 6) Previously diagnosed dyslexia. 7) School performance as compared to his/her classmates (high, mediumaverage, low). Other signs of school underachievement were: remedial educational program, school hyperactivity, and below class placement. 8) Developmental speech delay in infancy or early childhood, as stated by the mother.

Controls were selected from a school near the hospital, all of them with an average school performance as compared to their classmates. Hand preference for writing and drawing, laterality quotient, hand performance at the square-tracing task, and previous speech delay as stated by the parents were recorded.

89 BPE-RS patients and 85 controls were thus studied. Statistical methods were based on variance analysis and X square (with Yates correction). To describe numerical values in the text and tables, medium ± 1 SD is used.
Table I
Results according to brain hemisphere distribution of epileptic foci

<table>
<thead>
<tr>
<th></th>
<th>Left focus</th>
<th>Right focus</th>
<th>Bilat. foci</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>9.9 ± 0.3</td>
<td>10.5 ± 0.3</td>
<td>9.6 ± 0.4</td>
<td>10 ± 0.2</td>
</tr>
<tr>
<td>Male sex</td>
<td>22 (68.7 %)</td>
<td>17 (50 %)</td>
<td>15 (65.2 %)</td>
<td>37 (43.5 %)</td>
</tr>
<tr>
<td>Left handedness :</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For writing</td>
<td>3 (9.3 %)</td>
<td>4 (11.7 %)</td>
<td>2 (8.6 %)</td>
<td>4 (4.7 %)</td>
</tr>
<tr>
<td>LQ < 0</td>
<td>4 (12.5 %)</td>
<td>2 (5.9 %)</td>
<td>2 (8.6 %)</td>
<td>2 (2.4 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right handed</td>
<td>82.3 ± 5.2</td>
<td>90.8 ± 2.4</td>
<td>81 ± 5.2</td>
<td>91.3 ± 1.4</td>
</tr>
<tr>
<td>Left handed</td>
<td>-83.3 ± 16.6</td>
<td>-28 ± 22.3</td>
<td>-80 ± 20</td>
<td>-30 ± 31</td>
</tr>
<tr>
<td>LQ ≥ 0</td>
<td>86.3 ± 3.5</td>
<td>85.8 ± 4.2</td>
<td>81 ± 5.2</td>
<td>89.6 ± 1.8</td>
</tr>
<tr>
<td>LQ < 0</td>
<td>-70 ± 17.7</td>
<td>-66 ± 35</td>
<td>-80 ± 20</td>
<td>-80 ± 20</td>
</tr>
<tr>
<td>Number of errors with non preferred hand</td>
<td>22 ± 2.8</td>
<td>27.1 ± 2.7</td>
<td>28 ± 3.2</td>
<td>30.8 ± 1.5</td>
</tr>
<tr>
<td>Speech delay</td>
<td>4 (12.5 %)</td>
<td>1 (2.9 %)</td>
<td>9 (39.1 %)</td>
<td>8 (9.4 %)</td>
</tr>
<tr>
<td>Confirmed dyslexia</td>
<td>0</td>
<td>2 (5.9 %)</td>
<td>5 (21.7 %)</td>
<td></td>
</tr>
<tr>
<td>Suspected dyslexia</td>
<td>9 (28.1 %)</td>
<td>2 (5.9 %)</td>
<td>5 (21.7 %)</td>
<td></td>
</tr>
<tr>
<td>School under-achievers</td>
<td>4 (12.5 %)</td>
<td>5 (14.7 %)</td>
<td>7 (30.4 %)</td>
<td></td>
</tr>
<tr>
<td>Number of patients</td>
<td>32</td>
<td>34</td>
<td>23</td>
<td>85</td>
</tr>
</tbody>
</table>

RESULTS

- Hand laterality and brain hemisphere localization of epileptic focus

Rolandiic spikes foci were evenly distributed among bilateral, left or right hemispheres, not showing any relation to age, sex or left handedness (Table I). However, the LQ of right handed boys was lower when the epileptic foci were bilateral (LQ : 74.3 ± 7.1 p < 0.05) than when they had an unilateral right (LQ : 91.3 ± 3.1) or left foci (LQ : 88.3 ± 3.2). The LQ of right handed boys in the control group (88.2 ± 2.6) was significantly higher than the one of those with bilateral foci (p < 0.05).

Right handed boys performed more errors with the left hand (p < 0.05) when the epileptic foci were on the right or bilateral hemispheres, than when focus was on the left one. Since also speech delay had shown a relationship to poor performance of the non dominant hand (see Part I), we took this fact into consideration and found that foci distribution and speech delay do not seem to interact at increasing clumsiness, on statistical terms. Besides, if late speakers are excluded, the influence of foci localization over clumsiness disappears. On the other hand, incidence of bilateral foci was far more frequent in patients with previous speech delay than in those with normal speech development (p < 0.001). Dividing patients between left or right handed (Table II) and among the latter, between boys and girls, or excluding those with extreme clumsiness of the non preferred hand did not change percentages. It was concluded that developmental speech delay determined both poor hand performance and bilateral EEG foci. Incidence of left hemisphere focus was the same for late speakers than for those without speech delay. When compared to controls, a raised incidence of speech delay was found among those with bilateral foci (p < 0.01), as shown in Table I.

Table II
Speech delay and brain hemisphere distribution of epileptic foci

<table>
<thead>
<tr>
<th></th>
<th>Left</th>
<th>Right</th>
<th>Bilateral</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left handed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speech delay</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Normal</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Right handed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speech delay</td>
<td>4 (30.7 %)</td>
<td>1 (7.6 %)</td>
<td>8 (61.5 %)</td>
<td>13</td>
</tr>
<tr>
<td>Normal</td>
<td>25 (37.3 %)</td>
<td>29 (43.2 %)</td>
<td>13 (19.4 %)</td>
<td>67</td>
</tr>
</tbody>
</table>
Learning difficulties and brain hemisphere distribution of epileptic foci

Developmental dyslexia had been diagnosed and previously treated in 7 cases (8%), 3 of whom (the older ones) had already a normal writing test by the time of the study. 16 more cases could be classified as suspected dyslexic by the writing test, which made a total of 23 cases out of 89 (25.8%) with presumed or confirmed developmental dyslexia, among BPE-RS patients. These cases were mostly males (78.2%, p < 0.05), with recorded speech delay (50.4%, p < 0.05) and a medium (average) school achievement level (70%, p < 0.01). If patients previously diagnosed were excluded, presumed dyslexic patients were 9 ± 0.5 years old (p < 0.05).

There was not a raised incidence of left handedness within the total dyslexic group. The LQ was not different, once sex was taken into account. Performance with the non dominant hand was the same for dyslexic and non dyslexic patients. Dyslexia was associated with a higher rate of bilateral epileptic foci (p < 0.05). When late speakers were excluded, the relationship of dyslexia to bilateral foci attains a higher level of significance (p < 0.01). Dividing patients into right handed or left handed (Table III) do not change percentages. The incidence of left hemisphere focus, however, was similar for dyslexic or non dyslexic patients.

School achievement level based on the School report cards, and compared to their classmates’ performance, was: High in 39.3% (35 cases), medium in 42.7% (38 cases), and low in 18% (16 cases). No difference was found between sexes, but it was related to age: patients with poor school performance were older (11.5 ± 0.5 years old) than those with an average (10 ± 0.3 years old) or a high level (9.5 ± 0.2 years old, p < 0.01). Low level cases were also hyperactive at school, received remedial teaching, and were more frequently placed at a school grade lower than would be normal for his/her age (p < 0.001). Speech delay was reported more often (37.5%) in these cases (P < 0.05).

Within this group, there was not a raised incidence of left handedness, neither LQ variations or a different performance with the non dominant hand. The latter was nevertheless related to hyperactivity (p < 0.05).

School underachievers (low level) were, as a group, a different population than the « dyslexic » one above mentioned: the latter were younger and, for the most part, had an average school performance (medium level).

Bilateral epileptic foci was associated with a decrease of the school performance level (p < 0.05), as shown in Table IV. But since speech delay was more frequent among low school achievers, and was also related to bilateral foci, and « dyslexia » was related to both bilateral foci and average school level, we excluded late speakers and dyslexics (either confirmed or presumed), and found that the relationship of foci distribution and school performance is no longer evident (Table IV).
DISCUSSION

Left handedness may be determined by hand preference for writing and drawing, or by considering as such those with a LQ < 0 (Oldfield, 1971). In either circumstance, a raised incidence of left handedness was noted according to brain hemisphere distribution of epileptic foci (Table I). Nevertheless, right handed boys showed a lower LQ when foci were bilateral. Since the LQ of males is related to age, as seen in Part I of this study, one is tempted to presume the existence of some interference between bilateral rolandic spikes foci and brain laterality maturation for handedness.

18% of BPE-RS patients could be considered as school underachievers. As a group, they are a different population from those with presumed or confirmed dyslexia. For both, speech delay incidence was high, which is in agreement with other authors (Klackenberg, 1980). Writing errors suggestive of dyslexia were more frequent than expected among our epileptic patients. A 26% incidence among BPE-RS patients is only a tentative figure that deserves further investigation. Most cases had not been diagnosed previously of dyslexia, probably because their achievement level was average as compared to their classmates. But anyhow, they did not reach a high level of school performance as those with a normal writing test. Since controls were not submitted to the writing test, our findings need to be confirmed, and in such a case, patients with BPE-RS must be carefully looked upon for not so evident learning disorders.

We could not find a relationship between hand preference or LQ, and speech delay or school difficulties (either low performance, or «dyslexia»). Some authors have found evidence of this association (Kinsbourne, 1989), others have not found any (Pennington 1987), which might reflect the heterogeneity of language disorders as a group. It is possible that anomalous patterns of laterality in cases of reading difficulty are found only in certain diagnostic sub-categories (Beaton, 1985).

However, one could assume that when a functional epilepsy of a focal nature, such as BPE-RS, develops in an already developmentally delayed subject, dysfunction of that hemisphere would become more evident. In our study, patients with speech delay (Table II) and presumed or confirmed dyslexia (Table III) had the same incidence of left hemisphere focus as patients without either problem. For both disorders, there was a shift of frequency from right to bilateral hemisphere foci.

Recorded speech delay was found more frequently among those with bilateral foci than within the control group. The same happened when the LQ of right-handed boys was considered. That of right-handed girls was preserved in spite of foci distribution. Instead, left handedness was over-represented among BPE-RS female patients when compared to control (see Part I), but it was not due or related to hemisphere foci localization.

Other features, such as non-preferred hand performance and school achievement, did not seem to be directly related to the hemisphere distribution of epileptic discharges. Instead, they showed an association with speech delay and written language difficulties (figure 1), which might be the reason why hand performance was not worse than that of controls.

Our data do not support the theory of a left hemisphere focus being associated with learning or language difficulties.

Figure 1: Clinical expressions, other than seizures, of bilateral epileptic foci, in BPE-RS patients, as compared to unilateral right or left focus.
disabilities. Instead, bilateral rolandic-spikes foci could be the expression adopted by BPE-RS when the subject is by other means immature, or it could be the random distribution of BPE-RS foci, but with a worse prognosis for language abilities and hand laterality maturation than unilateral focus. A left hemisphere focus would either not interfere with the development of both, to a significant degree, or would allow for migration of language functions to the other hemisphere (Piccirilli et al., 1988), but in such a way as to preserve the patient from underachievement. The same could be true for right hemisphere functions under a right epileptic focus. With either unilateral foci, clinical consequence of the type here studied were not evident. Another point to consider is the changing nature of the epileptic focus from one hemisphere to the other, which is relatively frequent in BPE-RS. In a large series of patients (Prats, 1980), bilateral foci were present in 33% of cases, but only 1/3 of those were permanent, while 2/3 were bilateral only at some point of the evolution. Clinical consequences of transient versus permanent foci localization remain to be studied. Other studies (Kasteleijn-Nolst et al., 1990) have shown evidence of left-sided epileptiform discharges disrupting the child's reading ability, as compared to right-sided discharges. On either side, discharges occurred at a rate of one every 2 seconds, up to a minimum of one every 10 minutes, when the reading test was started. Thus, results are not surprising, but remind us of other critical manifestations of epilepsy, apart from seizures. Whether BPE-RS has such a high rate of epileptiform discharges over a prolonged period of time, enough to determine a learning disability, is not known. But patients with this type of epilepsy do not show a school underperformance to such a degree.

In spite of the fact that BPE-RS, if considered as a group, does not show evidence of determining an anomalous dominance when compared to controls, very coherent data are found in cases with bilateral rolandic spikes foci, that suggest a relationship to both hand laterality and language slow development. The results here reported must be interpreted as a first glance to the problem, and must be checked out with specific tests in selected probands. The question arises, not so much for hand laterality and BPE-RS, but for clinical consequences, other than seizures, of brain hemisphere distribution of epileptic foci.

RÉFÉRENCES

AICARDI J. (1986). Epilepsy in children (Raven Press), New York, 413.

La contribution de la posturographie tétra-ataxiemétrique au diagnostic différentiel des enfants autistiques*

R. KOHEN-RAZ*, J. ROSENBERGER, Z.L. CHEN*

* Université Hébraïque de Jérusalem, Israël.

Employant une méthode posturographique fondée sur l'analyse des tracés produits par la pression verticale sur quatre plates-formes électroniques (tétra-ataxiemétrique) une pour chaque talon et pointe respectivement, les enfants autistes manifestent un syndrome postural anormal, différent des enfants normaux et des autres psychopathologies. Il est caractérisé par (1) une instabilité importante, (2) une préférence à mobiliser le système somato-sensoriel aux positions aiséées même quand la vision est disponible, (3) une prédominance des oscillations latérales, (4) une répartition bizarre du poids mettant parfois 40-50 % du poids sur une seule plate-forme, (5) une réponse posturale paradoxale qui s'exprime par une meilleure stabilité aux positions difficiles. Treize enfants autistes parisiens furent examinés par cette méthode et présentaient le même syndrome ; en les répartissant en deux groupes d'intelligence supérieure (QI(M) = 46) et inférieure (QI(M) = 26), des différences cliniques et posturographiques ont été trouvées. Le groupe inférieur présentait plus de symptômes à haut risque neuropathologique, plus d'oscillations latérales et moins de réponses posturales paradoxales, moins de progrès en adaptation sociale. Il apparaît que la posturographie tétra-ataxiemétrique aide à différencier deux types d'autisme : autisme « pur » et autisme avec risque neuropathologique.

Mots clés : Autisme, Posturographie, Arrétation mentale, Haut risque neuropathologique, Tétra-ataxiemétrie, Psychopathologie d'enfants, Adaptation sociale, Intelligence.

* Cette recherche est fondée sur le projet NS-25026 des National Institutes of Health, Washington, D.C.
Le comportement postural bizarre des enfants autistiques est bien visible par observation naïve, ainsi que documenté par la recherche systématique (Colbert et Koegler, 1958 ; Ornitz, 1983). Il se manifeste par la marche sur les pointes, par une pose grotesque des bras, des épaules, des jambes, ainsi que par une hypertension du cou, du dos, etc. On voit aussi que les enfants autistiques sont peu irradiés par des stimulations vestibulaires : en témoigne une absence de vertiges quand ils tournent autour d'eux-mêmes, secouent leur tête, s'amusent sur les balançoires ou montent sur les toits. En même temps, il fut démontré par des expérimentations systématiques que le nystagmus primaire et secondaire est aberrant et diminue chez les enfants autistiques en état de vigilance, ainsi que pendant le sommeil (Kolvin et al., 1971 ; Makita, 1961 ; Ornitz, 1974 ; Ritvo et al., 1960). Dans ce contexte, il faut noter que trois théories neuro-anatomiques sur l'autisme, la théorie vestibulaire (Ornitz, 1973), la théorie mésocorticale (Damasio et Maurer, 1978), et la plus récente, la théorie cérébelleuse (Cournilhes, 1988), mentionnent des régions du système nerveux central qui sont étroitement liées aux mécanismes du contrôle postural. Malgré cette évidence empirique et l'argumentation théorique sur les relations probables entre les perturbations de la posture et l'autisme, ce sujet ne fut pas systématiquement exploré. Grâce à la posturographie moderne, qui se sert d'ordinateurs et de logiciels sophistiqués (Barigant et al., 1972 ; Kapteyn, 1972 ; Nigg, 1972 ; Kohen-Raz, 1979, 1989), il est devenu possible d'obtenir des mesures objectives et exactes sur le comportement postural des enfants autistiques et de les comparer aux enfants normaux ainsi qu'à d'autres groupes cliniques. Utilisant des échantillons relativement importants d'enfants autistiques en Israël et aux États-Unis, nous avons trouvé un syndrome postural autistique qui sera décrit en détail dans le texte suivant.

Les buts de l'étude rapportée dans cet article étaient : a) la vérification du syndrome postural autistique dans un échantillon d'enfants autistes français ; b) l'exploration de la sensibilité des mesures posturales pour différencier au sein de la population autistique bien connue comme hétérogène, différents types d'autisme.

MÉTHODE

Les résultats rapportés dans cet article furent obtenus par une méthode spécifique de posturographie qui mesure les oscillations de la pression verticale sur quatre plaques, une pour chaque talon et chaque pointe des...
deux pieds (« tétra-ataxiémie »). Le sujet examiné doit rester debout sur ces plates-formes, en maintenant des postures à plusieurs niveaux de difficultés, par exemple les yeux fermés, sur mousse, un pied mis devant l’autre, etc. Pour les enfants, et notamment pour des enfants autistes, la période expérimentale de chaque position est limitée à 20 secondes. L’émission électronique des plaques (4 signaux par seconde par plaque), qui se présente en forme d’oscillations posturographiques, est transmise à l’ordinateur et analysée par un logiciel spécialement préparé pour le but de la recherche tétra-ataxiémétrique. Pour attirer et maintenir l’attention et la concentration de l’enfant, un jeu de sons et lumières est placé devant ses yeux à une distance de deux mètres. Les détails de la méthode sont décrits dans le contexte des publications précédentes (Kohen-Raz, 1970, 1972, 1989 ; Kohen-Raz et Hiriart-Borde, 1979). Dans cet article, nous nous bornons à expliquer brièvement la signification des paramètres tétra-ataxiémétriques essentiels utilisés dans le cadre de l’étude que nous allons présenter.

Indice de stabilité

L’indice de stabilité (STQ) mesure le degré de l’oscillation de la pression verticale sur les quatre plaques, divisé par le poids du sujet. Plus cet indice sera élevé, plus grande sera l’instabilité de la personne examinée.

Analyse spectrale de Fourier des ondes tétra-ataxiémétriques

La méthode de cette transformation mathématique des signaux ondulatoires est bien connue. En l’appliquant pour analyser les oscillations posturographiques, on peut obtenir un graphique qui se prête bien à l’interprétation par inspection visuelle. D’autre part, pour faciliter l’évaluation statistique des interactions entre les puissances et fréquences des oscillations, nous avons réparti l’écart des fréquences de 0,05 jusqu’à 3,00 Hz en 8 bandes séparées, c’est-à-dire 0,00-0,10 ; 0,10-0,25 ; 0,25-0,35 ; 0,35-0,50 ; 0,50-0,75 ; 0,75-1,00 ; 1,00-3,00 ; 3,00 et plus. Cette méthode permet de comparer les puissances à travers cette échelle. En vue des hypothèses récentes de la théorie posturographique confirmées par la recherche empirique (Dewit, 1972), deux bandes de fréquences sont intéressantes : les fréquences basses de 0,10 et moins sont supposées indiquer l’activité de la boucle visuo-labyrinthisque du contrôle postural, et d’autre part les fréquences entre 0,20-0,40 Hz témoignant d’une intervention du système somato-sensoriel, ce qui arrive typiquement en cas de « stress postural » (les yeux fermés, debout sur mousse, etc). De cette façon, nous sommes arrivés à calculer une mesure globale de la prédominance relative du contrôle visuo-labyrinthisque par rapport au contrôle somato-sensoriel, en divisant la puissance des fréquences sous 0,10 Hz par la somme des puissances des fréquences entre 0,15-0,15 Hz. Ainsi on obtient le quotient spectral (SPQ), un autre paramètre important de la tétra-ataxiémie.

Distribution du poids

La distribution du poids est une mesure simple du pourcentage du poids mis sur chacune des 4 plaques, ce qui permet de calculer facilement la répartition du poids entre talons et pointes, la prédominance du poids sur un des pieds, etc.

Indice de la distribution du poids

L’indice de la distribution du poids (WDI) est une mesure secondaire pour évaluer la différence entre les 4 pourcentages du poids sur chaque plaque. Il est obtenu en calculant l’écart standard de ces pourcentages. Plus élevé est le WDI, plus grande est la « dysharmonie » de la répartition du poids.

Synchronisations

Les synchronisations sont des indices ressemblant aux corrélations, qui mesurent l’interdépendance entre les oscillations de deux des ondes ataxiémétriques ; c’est-à-dire, les mesures de synchronisation indiquent si deux tracés tétra-ataxiémétriques sont coordonnés, ce qui peut se manifester de deux façons différentes : a) Elles peuvent parcourir en forme parallèle. Dans ce cas nous parlons des synchronisations co-actives. Le score maximum est plus 100. b) D’autre part elles peuvent se présenter en forme symétrique, ce que nous avons défini comme synchronisation compensatoire, dont le score maximum est -100 (Figure 1). Évidemment, il y a six synchronisations possibles : entre les talons et pointes des deux pieds (2) ; entre les deux talons et les deux pointes (2) et entre chaque talon et la pointe controlatérale (2 synchronisations diagonales). Dans le contexte de l’étude ici présentée, nous avons limité notre analyse aux synchronisations des pointes, qui révèle la direction prédominante des oscillations ; c’est-à-dire, une synchronisation des pointes positive, « co-active » témoigne d’une oscillation en direction antéro-postérieure, tandis qu’une synchronisation négative, « compensatoire » est un signe d’un déplacement latéral du point de gravité, ce que l’on peut bien vérifier par observation clinique.

Figure 1 : Comparaison du quotient de stabilité (STQ) sur « Romberg yeux ouverts » et « Romberg yeux fermés sur mousse » entre groupe « S » (–) et groupe « I » (–) (note réponse « paradoxale » du groupe « S »).

YO : yeux ouverts ; YFM : yeux fermés sur mousse.
La fidélité des mesures tétra-ataxiémétriques est satisfaisante. Elle est fondée sur des retests après des intervalles de 2 jours jusqu'à 13 mois. Dans les populations normales, les coefficients de fidélité sur les positions du Romberg sont 0,88 à 0,95 pour l'indice de stabilité, de 0,42 à 0,72 pour la répartition du poids, et de 0,32 à 0,92 pour les puissances de Fourier (Ayalon et al., 1988). Dans les échantillons des enfants autistes, on a obtenu des coefficients de fidélité qui s'étendent de 0,38 à 0,81 pour la stabilité et la distribution du poids, et de 0,38 à 0,94 pour la synchronisation des pointes (Kohen-Raz, 1989).

LE SYNDROME POSTURAL AUTISTIQUE
L'investigation tétra-ataxiémétrique de deux échantillons d'enfants autistes en Israël (N = 59) et aux États-Unis (N = 20) nous a amenés à constater que certains signes posturographiques caractérisent les autistes ; on peut donc parler d'un « syndrome postural » typique. Nous allons le décrire en détail :

1) Le STQ des enfants autistes est très élevé comparé à celui des enfants normaux et des autres groupes cliniques, comme les sours, débiles mentaux et dyslexiques. D'ailleurs, l'écart standard dans les groupes autistiques est plus grand que celui des autres populations. Ceci témoigne de la composition hétérogène de cette population.

2) La distribution du poids (WDI) de la plupart des enfants autistes est très différente de celle des enfants normaux et des autres psychopathologies. Non seulement les pourcentages du poids sont dysharmoniques sur les talons, les pointes ou sur un des deux pieds, mais surtout on peut trouver une concentration de 40 % à 50 % du poids sur un seul talon ou une seule pointe, ce qui révèle une posture bizarre, quasi « tripodique ».

3) Dans les échantillons autistiques, on constate une prédominance de l'oscillation latérale, se manifestant par synchronisation compensatoire (i.e. négative) des pointes (BD). Cette synchronisation est rare chez les enfants normaux et peut être considérée comme le témoin d'une fixation à un comportement postural plutôt primaire et primitif caractérisant les très jeunes enfants et les arrêtés profonds.

4) Les sujets autistes manifestent ce qui peut être défini comme une « réponse posturale paradoxale ». Elle se caractérise par une stabilité identique ou même meilleure sur postures difficiles par rapport aux postures faciles.

5) Chez les sujets normaux, le quotient spectral (SPQ) est élevé sur les positions faciles et s'abaissa sur les positions plus difficiles. Ceci indique qu'il y a une mobilisation du « système postural somatosensoriel » en cas de stress postural. Chez les autistes le SPQ est déjà bas sur les positions faciles, ceci démontrant probablement qu'ils préfèrent utiliser le système somatosensoriel plus que le système visuo-labyrinthisque, même quand ils peuvent profiter des informations visuelles. Sur les positions plus difficiles, les autistes souvent ne changent pas leur SPQ et peuvent même l'améliorer, atteignant parfois le niveau normal. Cela peut être considéré comme une autre manifestation de la « réponse posturale paradoxale ».

L'ÉCHANTILLON FRANÇAIS
L'examen posturographique des enfants autistes français a été réalisé à Paris, dans une petite structure médico-pédagogique accueillant vingt enfants et adolescents autistiques. Ce centre, ouvert depuis cinq ans, recevait des enfants autistes de tout niveau et présentant tout trouble de comportement. Pour des raisons techniques, seulement treize enfants sur les vingt ont pu être vus : dix enfants entre 7 et 10 ans et trois adolescents de 14, 16 et 18 ans. Il s'agissait d'enfants des deux sexes : neuf garçons et quatre filles.

L'adolescente M entrait dans le cadre d'un syndrome de Rett. Tous présentaient à leur arrivée au centre une altération massive des interactions sociales, de gros troubles de la communication verbale et non verbale (pas de langage pour la majorité, seuls trois avaient acquis le langage mais sans grande valeur communicative (A, B et D), une absence totale d'activités structurées ou de participation active aux jeux proposés, enfin pour plusieurs, des stéréotypies envahissantes (A, B, F, M et N) ou des comportements obsessionnels stériles (C, I, K et L).

PROCÉDURE
L'appareillage tétra-ataxiémétrique, y compris l'ordinateur, est portatif. Grâce à cette facilité, tous les examens posturographiques furent exécutés dans l'ambiance familière à l'enfant, c'est-à-dire au centre. On a réussi à résoudre les difficultés particulières qui se posent à l'examen des enfants autistes de la manière suivante :

1) Le jeu des sons et lumières se révelait comme stimulus fascinant, peut-être dû à son caractère répétitif, un effet bien connu du groupe psychopathologique. 2) Trois personnes participaient à l'épreuve. Une d'elles était toujours l'éducatrice la plus proche de l'enfant. La deuxième donnait les instructions, arrangeait les plates-formes et corrigeait la position du sujet. La troisième maniait l'ordinateur.
Tableau I

Données cliniques et posturographiques sur les 13 enfants autistes parisiens répartis en deux groupes : intelligence supérieure (S) et intelligence inférieure (I)

<table>
<thead>
<tr>
<th>Groupe</th>
<th>Sujet</th>
<th>Âge actuel</th>
<th>QI actuel</th>
<th>CARS entrée</th>
<th>CARS actuel</th>
<th>Signes néo-natals</th>
<th>Signes physiques</th>
<th>Langage</th>
<th>Retrait emot</th>
<th>Hyperinstabilité</th>
<th>STQ YO</th>
<th>STQ YFM</th>
<th>SPQ YO</th>
<th>SPQ YFM</th>
<th>BD (41)</th>
<th>WDI (5,6)</th>
<th>Réponse paradoxale</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10,0</td>
<td>55</td>
<td>36</td>
<td>31</td>
<td>PRÉM.</td>
<td>RET.S.P.*</td>
<td>DYSMORPH.</td>
<td>2</td>
<td>X</td>
<td>7,9</td>
<td>1,8*</td>
<td>0</td>
<td>1,1</td>
<td>3</td>
<td>8,0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>14,3</td>
<td>49</td>
<td>38</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>0,8</td>
<td>3,3</td>
<td>0,4</td>
<td>0,9</td>
<td>0,3</td>
<td>5</td>
<td>4,1</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>8,9</td>
<td>47</td>
<td>49</td>
<td>37</td>
<td>DÉSHYDR.</td>
<td>1</td>
<td>10,4</td>
<td>2</td>
<td>X</td>
<td>3,7</td>
<td>2,0*</td>
<td>0</td>
<td>0,6</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>6,0</td>
</tr>
<tr>
<td>D</td>
<td>9,0</td>
<td>46</td>
<td>43</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>3,4</td>
<td>4,5</td>
<td>0,6</td>
<td>1,0</td>
<td>6</td>
<td>7,0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>8,5</td>
<td>46</td>
<td>43</td>
<td>37</td>
<td>C.I.V.</td>
<td>RET.S.P.</td>
<td>DYSMORPH.</td>
<td>0</td>
<td>X</td>
<td>2,8</td>
<td>-1,1*</td>
<td>1,0</td>
<td>-1,0</td>
<td>19</td>
<td>12,9</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>8,6</td>
<td>44</td>
<td>36</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>8,8</td>
<td>8,4*</td>
<td>1,2</td>
<td>1,3</td>
<td>12</td>
<td>8,9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>10,2</td>
<td>41</td>
<td>43</td>
<td>33</td>
<td>HYPOTON.</td>
<td>1</td>
<td></td>
<td></td>
<td>X</td>
<td>0,7</td>
<td>-0,1</td>
<td>0,7</td>
<td>-15</td>
<td>10,9</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>H</td>
<td>9,6</td>
<td>36</td>
<td>44</td>
<td>40</td>
<td>SOUFFR.</td>
<td>RET.S.P.</td>
<td>DYSMORPH.</td>
<td>2</td>
<td>X</td>
<td>0,0</td>
<td>3,8</td>
<td>0,7</td>
<td>0,8</td>
<td>14</td>
<td>6,9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>16,0</td>
<td>34</td>
<td>53</td>
<td>39</td>
<td></td>
<td>RET.S.P.</td>
<td>DYSMORPH.</td>
<td></td>
<td>X</td>
<td>0</td>
<td>3,6</td>
<td>11,3</td>
<td>1,3</td>
<td>-39</td>
<td>8,9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>8,7</td>
<td>33</td>
<td>32</td>
<td>29</td>
<td>HYPOTON</td>
<td>RET.S.P.</td>
<td>DYSMORPH.</td>
<td>1</td>
<td>X</td>
<td>3,9</td>
<td>3,7*</td>
<td>1,2</td>
<td>1,1</td>
<td>54</td>
<td>9,7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>7,7</td>
<td>32</td>
<td>39</td>
<td>37</td>
<td>HYPOTON</td>
<td>SYNDR.</td>
<td></td>
<td></td>
<td>X</td>
<td>3,4</td>
<td>4,5</td>
<td>0,6</td>
<td>1,0</td>
<td>-16</td>
<td>7,1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>18,2</td>
<td>11</td>
<td>52</td>
<td>45</td>
<td></td>
<td>RETS.</td>
<td></td>
<td></td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0</td>
<td>0,01</td>
</tr>
<tr>
<td>M</td>
<td>7,9</td>
<td>10</td>
<td>49</td>
<td>45</td>
<td>HYDRO-CÉPHAL.</td>
<td>SYNDR.</td>
<td></td>
<td></td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0</td>
<td>0,01</td>
</tr>
<tr>
<td>N</td>
<td>7,9</td>
<td>10</td>
<td>49</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,01</td>
<td>0,01</td>
<td>0,01</td>
<td>0</td>
<td>0,01</td>
</tr>
</tbody>
</table>

* Retard staturo-pondéral.
** 2 = communication simple, 1 = peu, 0 = pas de langage.
PRÉM. : prématurité ; DÉSHYDR. : déshydratation ; C.I.V. : communication interventriculaire ; HYPOTON. : hypotonie ; SOUFFR. NÉO-NAT. : souffrance néo-natale ; HYDRO-CÉPHAL. : hydrocéphalie ; DYSMORPH. : signes dysmorphiques.

Tableau II

Comparaison statistique des groupes (S) et (I) de l’échantillon

<table>
<thead>
<tr>
<th></th>
<th>Groupe (S)</th>
<th>Groupe (I)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>SD</td>
<td>M</td>
</tr>
<tr>
<td>Données cliniques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Âge</td>
<td>9,8</td>
<td>(2,07)</td>
<td>11,2</td>
</tr>
<tr>
<td>QI</td>
<td>46,4</td>
<td>(4,5)</td>
<td>26,0</td>
</tr>
<tr>
<td>CARS II (à l’entrée)</td>
<td>41,1</td>
<td>(4,74)</td>
<td>44,7</td>
</tr>
<tr>
<td>CARS I (actuel)</td>
<td>32,9</td>
<td>(3,28)</td>
<td>39,2</td>
</tr>
<tr>
<td>Lang.</td>
<td>1,1</td>
<td>(0,90)</td>
<td>0,3</td>
</tr>
<tr>
<td>Retard staturo pondéral</td>
<td>N = 2</td>
<td>N = 5</td>
<td></td>
</tr>
<tr>
<td>En retrait</td>
<td>N = 1</td>
<td>N = 6</td>
<td></td>
</tr>
<tr>
<td>Hyperinstabilité</td>
<td>N = 6</td>
<td>N = 0</td>
<td></td>
</tr>
<tr>
<td>Données ataxiémétriques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STQ (YO)</td>
<td>5,4</td>
<td>(3,60)</td>
<td>2,4</td>
</tr>
<tr>
<td>STQ (YFM)</td>
<td>3,6</td>
<td>(3,98)</td>
<td>4,4</td>
</tr>
<tr>
<td>SPQ (YO)</td>
<td>0,7</td>
<td>(0,48)</td>
<td>0,7</td>
</tr>
<tr>
<td>SPQ (YFM)</td>
<td>0,5</td>
<td>(0,83)</td>
<td>0,9</td>
</tr>
<tr>
<td>BD</td>
<td>-0,3</td>
<td>(11,37)</td>
<td>-16,7</td>
</tr>
<tr>
<td>WDI</td>
<td>7,3</td>
<td>(3,07)</td>
<td>7,9</td>
</tr>
<tr>
<td>Réponses paradoxales</td>
<td>1,7</td>
<td>(1,38)</td>
<td>0,7</td>
</tr>
</tbody>
</table>

n = N : nombre ; M : moyenne ; SD : déviation standard ; NS : non significatif ; YO : yeux ouverts ; YFM : yeux fermés sur mousse.
RÉSULTATS
L’élaboration des données posturographiques démontre clairement que le « syndrome postural autistique » trouvé chez les enfants autistes en Israël et aux États-Unis se manifeste également dans le groupe des autistes parisiens. Afin de simplifier la présentation, nous avons limité les données portées aux tableaux I et II à deux positions, c’est-à-dire le Romberg simple, yeux ouverts (YO) et le Romberg yeux fermés sur mousse (YFM). Aussi nous n’avons calculé que quatre mesures tétra-ataxiométriques, le quotient de stabilité (STQ), le quotient spectral (SPQ), la synchronisation des points (BD) et la distribution du poids (WDI). Les STQ et SPQ sont rendus sous forme de standard score, représentant la déviation du score individuel de la population normale divisée par l’écart standard de la population normale. Ainsi on peut voir directement le degré d’anomalie de ces deux mesures. Pour simplifier la lecture des données, un standard score positif exprime toujours un degré de performance perturbée. Lorsque le standard score est négatif, le rendement du sujet est supérieur à la normale, ce qui peut arriver chez les enfants autistes, et représente une « réponse posturale paradoxale ». Cette dernière se révèle d’ailleurs aussi par le standard score Romberg yeux ouverts (YO), plus mauvais que celui Romberg yeux fermés sur mousse (YFM). (Les réponses paradoxales sont marquées (*) sur le Tableau I). Quant à la notation de la synchronisation des points (BD) et la distribution du poids (WDI), nous reportons les moyennes originales (sans transformation en standard score), cependant nous avons mis la moyenne normale en tête de la colonne relevée concernant les deux mesures de performance de l’enfant autiste et celle de l’enfant normal. Une évaluation générale de l’intensité de la « réponse posturale paradoxale » est présentée sous forme d’un score de 0 à 3 dans la colonne à l’extrême droite du tableau I.

Nous ne nous sommes pas arrêtés à constater que l’ensemble de notre groupe parisien manifestait bien le syndrome postural autistique, évident du Tableau I, mais nous avons essayé d’explorer si l’examen tétra-ataxiométrique pouvait aider à différencier des types d’enfants autistes. Dans ce but, nous avons comparé le comportement postural mesuré par la méthode tétra-ataxiométrique aux données cliniques qui étaient à notre disposition, en partie prises sur le dossier de l’enfant, en partie provenant des observations et des comptes rendus de l’équipe de l’école. Ces données cliniques sont les suivantes :

- Le quotient de l’intelligence pratique fondé sur un ou plusieurs examens utilisant le psycho-educational profile (PEP) (Schöpfer et al.).
- Le CARS qui fut établi par l’équipe deux fois, une fois quelques semaines après l’entrée de l’enfant à l’école, une deuxième fois pendant une période plus proche de la date des examens posturographiques.
- Des informations générales sur la situation familiale, la grossesse, l’état de santé para- et postnatal.
- Les résultats des examens neurologiques, y compris EEG, Scan, etc.

Pour rendre notre analyse plus claire et efficace, nous avons réparti notre échantillon en deux groupes, utilisant le QI comme une mesure objective optimale, choisi par le médian de 43 comme point de coupe. Ainsi nous obtenons un sous-groupe d’intelligence « inférieure » (groupe I) et un sous-groupe d’intelligence relativement « supérieure » (groupe S), composé de six et sept enfants respectivement (Tableau I). Les résultats de cette analyse seront présentés et discutés en se fondant sur les données des tableaux I et II.

L’examen des observations cliniques révèle les différences suivantes entre les deux groupes : le CARS, mesure traditionnelle de la sévérité de l’autisme démontre une différence nette entre les deux groupes, en faveur du groupe S (intelligence supérieure). Cette différence est significative pour le CARS I (actuel), tandis qu’elle est évidente mais non significative pour le CARS II (à l’entrée). Cette différence entre le CARS I et CARS II est due au progrès nettement plus prononcé (et statistiquement significatif) en adaptation sociale et intellectuelle du groupe S. Savoir si ce phénomène est fonction de l’intelligence ou si, au contraire, le QI n’est qu’une manifestation d’un potentiel d’adaptation sociale est d’une importance secondaire. Sans doute cette dichotomie de l’échantillon en deux groupes typiques distincts par le QI a une validité heuristique évidente. 1) Nous observons une différence significative entre les deux groupes en ce qui concerne le retard staturo-pondéral. 2) Il existe une différence de signification marginale (p = 0,08) pour le langage. Nous constatons que dans le groupe I, quatre sur six enfants sont « non verbaux », « muets » en comparaison du groupe S qui ne présente qu’un seul muet sur sept. En revanche, trois enfants de ce groupe ont atteint un niveau de communication linguistique bas, mais présent, qui ne se trouve point parmi les sujets du groupe I. 3) Le comportement socio-affectif : six sur sept enfants du groupe S sont caractérisés par une hyperinstabilité, contrairement au groupe I, où aucun enfant ne manifeste ce syndrome. D’autre part les sujets du groupe I sont très en retrait, ce qui est totalement absent dans le groupe S. 4) Bien que dans les deux groupes les examens neurologiques ainsi que les examens paracliniques (EEG, Scanner, etc.) n’aient pas révélé de signes neurophysiopathologiques importants (données non tabulées), il y a une incidence plus grande de facteurs de risques néo-nataux dans le groupe I, c’est-à-dire deux hypotonies et deux hydrocéphalies, pour une hypotonie seulement dans le groupe S. Enfin, notons que parmi les sujets du groupe I, il y a un cas de syndrome de Rett. A la vue de ces données cliniques, sous toute réserve, nous sommes probablement confrontés dans le groupe I à des cas avec des risques neurophysiopathologiques évidents, alors que les enfants du groupe S entrent dans le cadre d’un "autisme pur".

En ce qui concerne les données posturographiques, on voit que tous les sujets de l’échantillon fonctionnent bien au-dessous du niveau normal à la plupart des mesures tétra-ataxiométriques sur les deux positions évaluées (Tableau I). De plus, nous trouvons deux mesures tétra-ataxiométriques qui paraissent différencier les groupes « I » et « S ». D’abord nous constatons que sur la position du Romberg difficile (yeux fermés sur mousse), cinq sur sept sujets du groupe S s’améliorent,
c'est-à-dire manifestent une réponse posturale paradoxale qui est limitée à deux parmi les six sujets dans le groupe I. L'évaluation quantitative exacte de l'incidence et de l'importance de la réponse posturale paradoxale (voir dernière colonne à droite sur le tableau I) révèle une différence significative entre les deux groupes (p = 0.04). D'autre part, le groupe I a une tendance plus prononcée à basculer de gauche à droite (une synchronisation des pointes — BD — basse et négative) en comparaison au groupe S. La différence entre les groupes n'est pas significative (p = 0.12), mais atteindrait probablement le niveau de signification dans un échantillon plus grand. Un BD bas est un signe général du retard mental, démontré dans nos études précédentes (Kohen-Raz, 1989). L'abaissement de cet indice dans le groupe « I » est donc en accord avec les résultats de ces études. Enfin, nous avons noté que chez les autistes « purs » la répartition dysharmonieuse du poids est due d'abord à une concentration exagérée du poids sur un seul talon ou pointe, tandis que celle des autistes « neuropathologiques » est plutôt une manifestation du placement inégal du poids sur un des pieds ou sur les pointes. Éventuellement, cette asymétrie serait liée à la latéralisation de la cérébropathologie, manifeste dans le cas de N avec dyspraxie de la main droite chez lequel nous avons observé une tendance nette à se porter sur son pied gauche, évitant autant que possible l'appui sur le pied droit.

En résumé, ces résultats confirment que la posturographie tétra-ataxiométrique montre non seulement des différences significatives entre les autistes et les enfants normaux, mais est également sensible aux différences retrouvées au sein de la population autistique.

Références

SCHOPLER E., REICHLER, (University Park Press), Baltimore.
Dyslexie acquise et dyslexie développementale : approche comparative

S. VALDOIS
Chargée de Recherche, CNRS, Laboratoire de psychologie expérimentale, Bâtiment Sciences de l'homme et Mathématiques, 1251, avenue Centrale, BP 47X, 38040 Grenoble Cedex, France.

Cet article propose une étude comparative des formes acquises et développementales de dyslexie. Les différentes formes de dyslexies acquises, centrales et périphériques, sont décrites et interprétées par référence à un modèle de lecture dit « à deux voies ». Des formes analogues se rencontrent chez l'enfant pour cinq des sous-types de dyslexie acquise considérés. Ceci démontre l'existence chez l'enfant de sous-types distincts de dyslexie attribuables à des dysfonctionnements spécifiques. L'existence de formes comparables chez l'enfant et chez l'adulte suggère également qu'une certaine analogie pourrait exister entre modèles adultes et modèles d'acquisition de la lecture.

Mots clés : Neuropsychologie de l'enfant,
 Dyslexie acquise,
 Dyslexie développementale,
 Modèles de lecture.

Acquired dyslexia and developmental dyslexia : a comparative analysis

This paper focusses on a comparative analysis of acquired and developmental dyslexias. The different syndromes of acquired dyslexia are reviewed and interpreted within the framework of a dual-route model. Cases of five different varieties of developmental dyslexia are described that are close analogues of the acquired dyslexia subtypes. The identification of similar forms in both acquired and developmental dyslexia suggests that some similarity could exist between the architecture of the normal adult reading system and that of the developmental reading process.

Key words : Developmental neuropsychology,
 Acquired dyslexia,
 Developmental dyslexia.
le terme de dyslexie renvoie à un trouble de la lecture pouvant se maniester chez l’adulte à la suite d’une atteinte du système nerveux central ou chez l’enfant au moment de l’acquisition de la lecture. On désigne ce trouble sous le nom de dyslexie acquise lorsqu’il se manifeste chez l’adulte et sous le nom de dyslexie développementale lorsqu’il se rencontre chez l’enfant.

— La dyslexie acquise se manifeste par une baisse des performances en lecture et l’apparition d’erreurs de lecture ou paralexies chez des sujets qui avaient une bonne maîtrise du langage écrit avant leur accident.

— La dyslexie développementale est un trouble de l’acquisition des mécanismes de lecture tel, que les résultats aux tests standardisés d’aptitude à la lecture sont significativement inférieurs au niveau escompté compte tenu de la scolarisation du sujet, de son âge réel et de son âge mental. Six principaux critères sont généralement retenus en recherche pour poser le diagnostic de dyslexie développementale (voir Tableau 1).

<table>
<thead>
<tr>
<th>Tableau 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critères diagnostiques des dyslexies développementales</td>
</tr>
<tr>
<td>(1) Efficience intellectuelle normale (QI ≥ 90).</td>
</tr>
<tr>
<td>(2) Bonne acuité visuelle et auditive.</td>
</tr>
<tr>
<td>(3) Absence de troubles psychologiques ou psychiatriques.</td>
</tr>
<tr>
<td>(4) Scolarisation adéquate et régulière.</td>
</tr>
<tr>
<td>(5) Absence de déprivation culturelle.</td>
</tr>
<tr>
<td>(6) Age de lecture inférieur de 18 mois à l’âge chronologique.</td>
</tr>
</tbody>
</table>

Ces critères ont notamment pour but de distinguer un réel trouble de l’apprentissage de la lecture, d’un simple retard d’apprentissage qui ne serait pas de nature fonctionnelle mais pourrait résulter d’une scolarisation inadéquate. Ils visent également à distinguer la dyslexie d’un trouble global du fonctionnement intellectuel se manifestant par l’incapacité à accéder à un certain niveau d’abstraction et à acquérir un code écrit.

DYSLEXIE ACQUISE ET DYSLEXIE DÉVELOPPEMENTALE

Dyslexie acquise et dyslexie développementale ont longtemps été considérées comme deux entités fondamentalement différentes, pour deux raisons principales :

1) Alors que plusieurs formes de dyslexies acquises avaient été identifiées comme résultant d’atteintes fonctionnelles différentes, la dyslexie développementale a longtemps été considérée comme un syndrome unitaire, tous les enfants dyslexiques présentant les mêmes symptômes et les mêmes difficultés. Une cause unique pouvait dès lors être invoquée pour rendre compte de ce trouble de l’apprentissage de la lecture.

Pour certains auteurs, la dyslexie développementale en tant que syndrome unitaire serait due à un trouble de la perception visuelle (Young et Lindsley, 1970). En effet, plusieurs études démontrent que les enfants dyslexiques ont des performances inférieures à celles de témoins d’âge équivalents dans des tâches de recherche visuelle. Cette hypothèse est aujourd’hui abandonnée dans la mesure où la différence se manifeste essentiellement lorsque le matériel présenté est du matériel linguistique. En revanche, les performances des sujets dyslexiques sont équivalentes à celles de contrôle du même âge lorsque le matériel utilisé en recherche visuelle est du matériel non verbal.

Pour d’autres tenants de l’hypothèse unitaire, la dyslexie serait due à un déficit ocu-lomoteur (Pavlidis, 1985). Il est vrai que des troubles ocu-lomoteurs sont fréquemment décrits dans le contexte des dyslexies développementales. Ces troubles se caractérisent principalement par la présence de saccades oculaires plus courtes, par des temps de fixation plus longs et par des retours en arrière fréquents. Cependant, tous les enfants dyslexiques ne présentent pas de troubles ocu-lomoteurs. Par ailleurs, dans le cas où dyslexie et déficits ocu-lomoteurs coexistent, il demeure difficile de déterminer si ces troubles sont à l’origine des dyslexies ou en sont plutôt la conséquence.

Enfin, certains auteurs supposent que la dyslexie développementale résulte d’un trouble de la mémoire à court terme (Jorm, 1979). Plusieurs études montrent en effet que les enfants dyslexiques sont en moyenne moins performants que des sujets contrôles d’âge équivalent dans des tâches de mémoire à court-terme où ils leur demande par exemple de mémoriser des séries de chiffres. Cependant, là encore une grande variabilité inter-sujets est observée et il semble difficile d’établir un lien direct de cause à effet entre les deux déficits.

2) Dyslexie acquise et dyslexie développementale devaient nécessairement se manifester sous des formes différentes puisqu’on a affaire dans un cas à une atteinte fonctionnelle intervenant au sein d’un système mature alors que dans les dyslexies développementales, l’atteinte concerne un système en cours de structuration, qui ne présente pas nécessairement les caractéristiques du système fini. Dans cette optique, dyslexie acquise et dyslexie développementale devaient obligatoirement s’interpréter par référence à des modèles théoriques différents, modèles d’acquisition de la lecture chez l’enfant (Frith, 1985 ; Seymour, 1987) et modèles de lecture chez l’adulte (Marshall et Newcombe, 1973 ; Ellis et Young, 1988 ; Shallice, 1990).

Plusieurs études sur la dyslexie de l’enfant ont cepandant contribué à remettre en question les perceptions unitaires de la dyslexie développementale. Boder (1973) a montré, à partir de l’étude de groupes d’enfants dyslexiques, la nécessité de différencier au moins deux sous-types de dyslexies correspondant aux formes dyscèdétiques et dysphonétique.

Les enfants qui présentent une dyslexie de type dyscèdétique ont une lecture lente et laborieuse. Ils déchiffrent chaque mot et procèdent systématiquement de manière analytique comme si le mot présenté était à chaque fois un mot nouveau. Les erreurs qu’ils produisent sont essentiellement des erreurs de régularisation (e.g., « femme » produit « fém »).

Dans la forme dysphonétique, au contraire, les enfants
sont dans l’incapacité d’effectuer une analyse du mot écrit. Ils possèdent un stock limité de mots qui sont reconnus visuellement et auxquels peuvent être associées les formes phonologiques correspondantes. Il leur est en revanche très difficile d’appréhender des mots nouveaux et les erreurs produites sont essentiellement des erreurs visuelles (e.g., « flacon » produit « flocon ») et des erreurs sémantiques (e.g., « lampe » produit « lumière »).

Donc, Boder (1973) reconnaît l’existence d’au moins deux formes de dyslexies développementales qui s’appa-
rentent grossièrement à des formes décrites par ailleurs
chez l’adulte.

On observe donc, jusque dans les années 80, une dichotomie nette entre les méthodes adoptées pour l’étude des dyslexies acquises et celles qui abordent les troubles de l’acquisition de la lecture. Dans le cadre de l’approche neuropsychologique, les dyslexies acquises sont étudiées par référence à des modèles développés en psychologie cognitive. L’analyse détaillée de cas uniques permet de mettre en évidence l’existence de sous-types de dyslexie résultant de l’atteinte sélective de composantes spécifiques intervenant dans le processus de lecture. Le plus souvent, au contraire, les formes développementales ne sont ni analysées ni interprétées par référence à des modèles de traitement de l’information clairement for-
mulés. L’étude de groupes d’enfants, même lorsqu’elle
conclut à l’existence de plusieurs formes de dyslexies développementales ne conduit pas à préciser la nature de l’atteinte fonctionnelle responsable des troubles ob-
servés.

Dans le courant des années 80 cependant, l’intérêt crois-
sant pour l’approche neuropsychologique conduit à rechercher l’existence de sous-types de dyslexies déve-
loppementales sur la base d’études de cas détaillées (e.g., Seymour et MacGregor, 1984). Plusieurs études sont alors menées par référence aux modèles cognitifs élaborés pour rendre compte des pathologies adultes (Van Hout, 1991). Plusieurs de ces études ont permis de décrire chez l’enfant des formes analogues à celles qui avaient été préalablement observées chez l’adulte.

Glossaire

- Mots réguliers : mots renfermant des lettres ou séquences de lettres se réalisant toujours de la même façon quel que soit le contexte du mot. Exemple : « cinéma, para-
pluie, peinture ».
- Mots irréguliers : mots renfermant une séquence parti-
culière de lettres qui n’existe que dans ce seul mot et dont la production ne peut se déduire par règle. Exemple : « femme, yacht, monsieur ».
- Mots inconsistants : mots renfermant une séquence de lettres qui peut se prononcer de façon différente selon le mot dans lequel elle apparaît. Exemples : « outil/fusil — avril » ou « façon/paon — pharaon ».
- Non-mots légaux ou pseudomots : séquences de lettres qui ne correspondent pas à un mot de la langue mais res-
pectent les règles de formation des mots. Exemples : « séta-
pole, crodale, plotaire ».

Apprroxhem Neuropsychologique des Dyslexies Acquises

L’approche neuropsychologique des dyslexies acquises s’est essentiellement développée à la suite de l’article de Marshall et Newcombe (1975). Cet article présente six cas de dyslexie acquise correspondant à trois formes dis-

tinctes : deux cas de dyslexie visuelle, deux cas de dyslexie de surface et deux cas de dyslexie profonde, qui se caractérisent par des erreurs spécifiques en lecture.

La dyslexie de surface (Patterson, Marshall et Coltheart, 1985) se caractérise par de meilleures performances en lecture de mots réguliers et de non-mots qu’en lecture de mots irréguliers ou inconsistants (voir glossaire). Les erreurs sont essentiellement des erreurs de régularisation. La dyslexie profonde (Patterson et Marshall, 1985) se caractérise par l’incapacité des sujets à lire des non-mots et la fréquence des paralexies sémantiques (ex : itinéraire → chemin).

Figure 1. Processus mis en jeu par les voies de traitement phonologique et lexicale en lecture de mots.
L’identification de ces deux formes de dyslexie a conduit à faire l’hypothèse de deux voies de lecture indépendantes (figure 1).
La voie dite « phonologique » est indispensable à la lecture des non-mots et des mots nouveaux. Cette voie met en jeu plusieurs processus dont un système de règles permettant la transition graphème-phonème (Temple, 1985).
La voie lexicale permet la lecture par adressage des mots de la langue. Elle est notamment indispensable à la lecture des mots irréguliers et inconsistants. Cette voie permet d’accéder directement à la représentation phonologique du mot à partir d’une représentation orthographique mémorisée (figure 2).

Figure 2. Représentation schématique d’un modèle de lecture dit « à deux voies ».

Le syndrome de dyslexie de surface résulterait de l’incapacité à utiliser la voie lexicale directe non fonctionnelle chez ces patients. La performance repose alors sur la mise en jeu d’une stratégie de lecture analytique sérielle utilisant la voie non lexicale de conversion graphème-phonème. La dyslexie profonde, au contraire, s’observe lorsque la voie phonologique est non fonctionnelle. Le sujet procède alors par une stratégie de lecture globale du mot par la voie lexicale.
Les modèles à deux voies parce qu’ils ne présentent qu’une vision par trop schématique des processus de lecture ont été largement remis en question par les tenants des modèles de traitement analogique (Marcel, 1980 ; Glushko, 1979). Ils constituent néanmoins un cadre conceptuel privilégié pour aborder l’étude des formes pathologiques. C’est donc par référence à un modèle de ce type que seront exposés ici les différents sous-types de dyslexie identifiés chez l’adulte.
 Suite à l’article princeps de Marshall et Newcombe (1973), les formes publiées de dyslexie acquise se sont multipliées ainsi que les étiquettes nosologiques correspondant aux différents syndromes ainsi identifiés. Une distinction majeure est généralement faite entre dyslexies centrales et dyslexies périphériques. Les dyslexies périphériques correspondent à une atteinte des processus qui interviennent précocément dans la lecture alors que les dyslexies centrales résultent de l’atteinte de processus plus tardifs (Shallice, 1990). On parlera de dyslexie périphérique si le déficit empêche l’accès à la forme visuo-orthographique globale du mot. Il s’agit alors d’une atteinte du système d’analyse visuelle qui permet l’identification et la catégorisation des formes écrites. On parlera de dyslexie centrale si le trouble se situe plus en aval et concerne les systèmes impliqués dans l’analyse phonologique et sémantique du mot écrit.

LES DYSEXIES CENTRALES
Dyslexie profonde et dyslexie de surface constituent deux sous-types de dyslexies centrales acquises pour lesquelles des formes équivalentes ont été décrites chez l’enfant.
Une forme développementale analogue à la dyslexie profonde
Ce cas de dyslexie développementale s’apparente donc aux dyslexies profondes décrites chez l’adulte mais les erreurs sémantiques sont peu nombreuses contrairement à ce qui a pu être observé chez l’adulte.
Une forme développementale analogue aux dyslexies de surface
Holmes (1973) fut le premier à rapprocher les erreurs caractéristiques des formes acquises de dyslexie de surface des erreurs produites par certains enfants en phase d’acquisition de la lecture. L’existence d’une analogie
entre forme acquisée et forme développementale a été plus tard confirmée par Coltheart et al. (1983). Ces auteurs décrivent le cas d’une adolescente de 15 ans, C.D., qui a une bonne intelligence (QIV = 105 ; QIP = 101) et dont l’âge de lecture est évalué à 10 ans. C.D. présente de grosses difficultés en lecture de mots irréguliers. Les erreurs de lecture sont essentiellement des erreurs de régularisation et les confusions entre homophones sont nombreuses. La lecture des non-mots est également perturbée ce sujet mais à un moindre degré. Ce cas témoigne de l’existence de formes dyslexie développementale analogues aux dyslexies de surface décrites chez l’adulte (voir également Goulandris et Snowling, 1991).

Une forme de dyslexie phonologique développementale
La dyslexie phonologique correspond chez l’adulte à un trouble de la lecture qui se caractérise : (a) par une incapacité à lire les mots peu familiers et les non-mots ; (b) de grosses difficultés pour lire les mots fonctions. Les performances en lecture sont comparables, que le mot présenté visuellement soit régulier ou irrégulier, imageable ou non imageable. On ne relève pas davantage d’effet lié à la longueur du mot présenté. Paralexies visuelles (grappe ➔ grappe) et dérivationnelles (enfant ➔ enfant) prédominent largement alors que les erreurs sémantiques sont absentes (Beauvois et Dérouesné, 1979 ; Shallice et Warrington, 1980 ; Patterson, 1982). Ce trouble est interprété comme résultant d’une atteinte des processus d’assemblage mis en jeu par la voie phonologique. On suppose que la voie lexica bloque fonctionnelle et que des capacités résiduelles de traitement phonologique empêchent la production de paralexies sémantiques.

Absence de formes développementales analogues aux dyslexies directes
Une dernière forme de dyslexie centrale a été décrite chez l’adulte sous le nom de dyslexie directe ou dyslexie asémantique (Schwartz, Marin, Safran, 1979). Les sujets présentant ce type de trouble sont capables de lire les mots (et les non-mots) mais sont dans l’incapacité totale d’attribuer un sens aux mots lus. Ce trouble se rencontre dans des formes de démence présénile et suppose que les mécanismes de lecture sont demeurés intacts alors que le système sémantique lui-même est détruit.

Aucune forme équivalente n’a été décrite chez l’enfant.

LES DYSLEXIES PÉRIPHÉRIQUES

On distingue à l’heure actuelle chez l’adulte 4 formes de dyslexies périphériques mais peu de cas analogues ont été décrits chez l’enfant.

Absence de forme développementale de dyslexie par négligence
Les sujets présentant une dyslexie par négligence font essentiellement des erreurs visuelles où les lettres les plus à droite du mot sont préservées alors que les lettres les plus à gauche, en début de mot, sont modifiées (ex : message ➔ passage). Aucun facteur linguistique (e.g., fréquence, longueur, complexité) ne semble, en revanche, influencer les performances en lecture. Le plus souvent, les lettres initiales sont substituées plutôt qu’omises si bien que le mot produit renferme le même nombre de lettres que le mot cible. Ce type de trouble se rencontre le plus souvent dans le contexte d’une négligence visuelle, cependant les deux troubles ne sont pas directement reliés. Costello et Warrington (1987) ont notamment décrit le cas d’un sujet présentant une dyslexie visuelle affectant l’identification des lettres les plus à gauche du mot alors que la négligence visuelle concernait l’espace visuel droit. Le déficit qui semble responsable de ce type de trouble se situerait au niveau du système d’analyse visuelle dont la fonction est d’identifier les lettres du mot et d’encoder leur position. On suppose que dans la dyslexie par négligence, l’encodage positionnel est correctement effectué alors que l’identification des lettres est perturbée (Ellis, Flude et Young, 1987). Ainsi, un mot comme « sable » par exemple sera normalement encodé par le système d’analyse visuelle sous la forme d’une représentation du type « S (1) A (2) B (3) L (4) E (5) ». Ellis et al. (1987) supposent que dans la dyslexie par négligence, une ou plusieurs lettres initiales peuvent ne pas être identifiées alors que l’information positionnelle correspondante demeure préservée. Une représentation lacunaire du type « (1) A (2) B (3) L (4) E (5) » sera alors produite, conduisant à des erreurs de substitutions telles que « Table ». Aucune forme comparable de dyslexie développementale n’a été décrite jusqu’ici.

Absence de forme développementale analogique aux dyslexies attentionnelles
Il existe un seul cas de dyslexie attentionnelle acquis publiée par Shallice et Warrington (1977). Le sujet qu’ils décrivent est capable de lire les mots mais tout à fait incapable d’épeler les lettres qui composent les mots écrits ou les suites de lettres qui lui sont présentées visuellement. Le déficit ne peut être attribué à un trouble de l’identification ou de la dénomination des lettres dans
la mesure où le sujet est parfaitement capable de donner le nom des lettres qui lui sont présentées individuellement. Le trouble n’est, par ailleurs, pas d’origine visuelle puisque la performance en épellation à partir de la forme écrite est nettement meilleure lorsque la séquence est composée d’une alternance de lettres et de chiffres que lorsqu’elle est uniquement composée de lettres. Ces sujets sont également incapables de nommer la lettre centrale d’une suite de lettres sans sens (ex : « X » dans « BFXQL ») et produisent en général une autre lettre de la séquence. On observe également des migrations de lettres si on présente une série de mots à lire c’est-à-dire que certaines lettres d’un mot de la série sont lues dans le contexte d’un autre mot comme si elles appartaient à ce dernier (ex : « pig but » → « big put »). Ce trouble est interprété comme résultant de l’atteinte du système d’analyse visuelle dont une troisième fonction serait de regrouper, sur une base perceptive, les lettres appartenant à un même mot dans une position donnée. Cette fonction serait perturbée dans la dyslexie attentionnelle.

Aucun cas de dyslexie développementale comparable à cette forme, par ailleurs rare de dyslexie acquise, n’a été décrit jusqu’ici.

Un cas probable de dyslexie lettre-par-lettre chez l’enfant

Plusieurs cas de lecture lettre-par-lettre ont été décrits chez l’adulte (Warrington et Shallice, 1980 ; Howard, 1990). Ces sujets sont incapables de lire les mots globalement. La lecture n’est possible que si le mot écrit est préalablement épelé lettre-par-lettre, puis recomposé. Les erreurs sont d’autant plus nombreuses que le mot est plus long et la performance dépend en grande partie de la capacité des sujets à identifier et à dénommer les lettres individuelles.

Dans la mesure où l’épellation ne semble pas correspondre à un processus normalement mis en jeu lors de la lecture, le recours à ce processus est plutôt considéré comme une stratégie mise en place par le sujet pour compenser un trouble spécifique, à savoir l’incapacité d’activer la forme globale du mot à partir de l’information visuelle qui lui est donnée. On interprète en général ce trouble comme un déficit de l’accès automatique au lexique visuel ou comme une atteinte du lexique visuel lui-même.

Il n’existe pas de cas publié présentant une étude détaillée de dyslexie développementale où un enfant serait dans l’incapacité de reconnaître et de lire les mots globalement et utiliserait une stratégie d’épellation lettre-par-lettre. De tels cas semblent cependant exister si on se réfère à Hinshelwood (1917), cité par Ellis (1984). Cet auteur décrit en effet le cas d’un enfant de 12 ans présentant un trouble de la lecture tel que seul un très petit nombre de mots pouvait être appréhendé globalement. Pour être identifié et lu, le mot devait être préalablement épelé à haute voix. L’épellation était effectuée sans difficulté. Ce cas est malheureusement décrit très succinctement et on ne dispose que de peu d’informations sur l’efficacité intellectuelle de cet enfant, sa scolarité et l’existence ou non de troubles associés. Aucun cas comparable n’a été décrit depuis lors.

Une forme de dyslexie visuelle développementale

Un cas de dyslexie visuelle développementale a été récemment décrit par Valdois et al. (1991). Il s’agit d’une fillette de 10 ans ayant une bonne efficacité intellectuelle (QIV = 119 ; QIP = 105) et un âge de lecture de 7 ans 2 mois. Les performances en lecture sont équivalentes, que l’item présenté soit un mot, régulier ou irrégulier, ou un non-mot. On ne met pas en évidence d’effet lié à la nature concreta ou abstraite du stimulus ni d’effet du classe grammatical. La performance en lecture est en revanche influencée par la longueur du mot à produire. Les erreurs sont très majoritairement des paralexies visuelles. On observe également quelques erreurs dérivationnelles mais pas de paralexies sémantiques. Les erreurs visuelles consistent le plus souvent à produire un autre mot de la langue (ex : monstre → monstre). Dans ce cas, le mot produit est en général plus fréquent que le mot cible attendu mais ne renferme pas le même nombre de lettres. Les erreurs ne concernent pas préférentiellement les lettres situées en début de mot comme c’est le cas dans les dyslexies par négligence. Ce cas de dyslexie développementale est donc tout à fait comparable aux dyslexies visuelles acquises puisqu’il se caractérise par l’absence d’effet des variables lexicales sur les performances en lecture et par la prédominance des erreurs visuelles.

Plusieurs épreuves ont été élaborées afin de préciser la nature et la localisation fonctionnelle du déficit responsable de ce trouble spécifique. Les performances obtenues en décision lexicales sont globalement bonnes à l’exception des non-mots visuellement proches de mots réels (ex : nocture, tonfaine) qui sont en général acceptés comme des mots de la langue. La lecture de ces mêmes non-mots conduit à la pro-

DIFFÉRENTES FORMES DE DYSLEXIE IDENTIFIÉES CHEZ L’ENFANT.

L’utilisation de modèles fonctionnels construits pour rendre compte de la performance de sujets adultes constitue sans doute un cadre conceptuel privilégié pour l’analyse des dyslexies développementales. Ce cadre est néanmoins trop restrictif et trop statique lorsqu’il s’agit de donner une interprétation de déficits observés chez l’enfant. Multiplier les observations de formes développementales par référence aux modèles adultes permettra peut-être de mieux cerner les limites de ces modèles même si l’existence de formes voisines de dyslexies acquises et développementales laisse supposer qu’une certaine analogie pourrait exister entre modèles adultes et modèles d’acquisition.

RÉFÉRENCES

Relation entre autisme infantile et syndrome d’Asperger : à propos d’un cas

P. MESSERSCHMITT*, D. LEGRAIN**, C.-J. MADELIN***

* Psychiatre des hôpitaux, Unité de psychopathologie de l’enfant et de l’adolescent, Hôpital Trousseau, 75012 Paris, France.
** Psychologue, Unité de psychopathologie de l’enfant et de l’adolescent, Hôpital Trousseau, 75012 Paris, France.
*** Psychiatre, Unité de psychopathologie de l’enfant et de l’adolescent, Hôpital Trousseau, 75012 Paris, France.

Nous décrivons l’histoire clinique et l’examen psychologique d’un patient de 20 ans, présentant un autisme infantile de haut niveau, diagnostiqué dans la troisième année de vie. À la lumière du tableau clinique actuel et des résultats du bilan psychologique, sont discutées les relations entre le devenir adulte des autistes et le tableau clinique du syndrome d’Asperger, décrit en 1944. L’observation présente devrait contribuer à situer le syndrome d’Asperger aux confins des autismes résiduels de haut niveau, des débilités légères hétérogènes, des dysharmonies évolutives psychotiques et de certaines schizophrénies.

Mots clés : Autism infantile, Syndrome d’Asperger, Psychoses.

Relationship between infantile autism and Asperger’s syndrome : about a case

The authors describe the clinical development and psychological testing of a 20 years old patient, diagnosed as autistic at 3. This clinical and psychological evaluation leads to arguments on the relations between the evolution of autism in adults and Asperger’s syndrome, described in 1944. This observation is expected to contribute to give a place to Asperger’s syndrome in regard to high functioning autism, heterogeneous mild mental retardation, psychotic « dysharmonie evolutive », and some schizophrenic cases.

Key words : Infantile autism, Asperger’s syndrome, Psychoses.
DÉVELOPPEMENT ET HISTOIRE DE JEAN

Troisième d'une fratrie de trois enfants, Jean est né dans une famille de haut niveau socioculturel, sans antécédent pathologique particulier. Sa mère avait 40 ans au cours de cette dernière grossesse. L'accouchement s'est fait par ventouse, rapide, le poids de naissance était de 3 200 g. Le bilan néonatal était normal en dehors d'une incompatibilité Rhésus n'ayant nécessité aucune exsanguinotransfusion.

Jean a présenté des oîtes purulentes nécessitant des paraentèses répétées dans la première année, et une mastoïdite droite opérée ainsi que l'ablation des végétations et des amygdales. Il a fait ses premiers pas à 14 mois, et a présenté un premier développement normal du langage : premiers mots à 1 an, phrases dans la troisième année, pas de trouble phonétique ni de structuration syntaxique.

C'est dans la troisième année de vie qu'apparaissent des troubles du comportement, que la famille rattache à un épisode fébrile avec convulsions, étiqueté « virose » survenu lors d'un voyage en Italie. « Ensuite, ça n'a plus été le même enfant ». L'enfant ne présente pas de régression psychomotrice, ni linguistique, mais des troubles majeurs du comportement qui font porter le diagnostic d'autisme infantile, à 30 mois environ.

Élevé dans sa famille jusqu'à 3 ans, il entre à la maternelle, et le tableau clinique est celui d'un enfant bizarre, original, distant, étrange, refusant les contacts sociaux, « comme s'il n'entendait pas ». Il est très dépendant de sa mère, et accomplit sa scolarité primaire sans difficulté majeure, bénéficiant d'aides multiples, en psychomotricité, psychothérapie, stimulations éducatives familiales, cours particuliers, sports, ordinateur, piano, etc. Les parents refusent toute structure spécialisée de jour. La scolarité secondaire est menée de 12 à 17 ans grâce à la tolérance pédagogique du collège, deux redoublements, un soutien éducatif, rééducatif et psychothérapeutique. Jean est alors intégré dans un cycle de BEP de comptabilité sans obligation de résultats.

EXAMEN DE JEAN À 20 ANS

C'est un grand adolescent pubère, stable, bizarre, adhérent, présentant un bavage important, l'air en permanence « étonné », intervenant de manière impulsive, discrédite, plutôt gai et sans agressivité. Le regard est volontiers à côté ou « transparent ».

Selon les critères du DSM III R, le sujet présente une altération qualitative des interactions sociales, un manque d'empathie, une relative indifférence et incompréhension des sentiments des autres, un isolement social et une absence de comportements de groupe et de relation amicale avec ses pairs. Il dispose d'une capacité d'imiter, mais plaquée, mécanique, automatique, inadaptée sociallement. Altération qualitative des communications verbale et non verbale, et de l'activité d'imaginaire. La mimique et la gestuelle globale sont étranges, maladroites, figées, dysharmonieuses, sans anticipation. Le langage est monocorde, avec répétitions écholaliques des questions qui lui sont posées, ou de certaines affirmations de son interlocuteur. On note depuis toujours un « rébusage » témoignant d'une activité écholalique transformée en activité compulsive, circulaire, de répétition de propositions comme « pour ne pas oublier », auto-entretien. Il existe encore des inversions pronominales, des utilisations idiosyncrasiques de phrases, des réflexions « à côté ». Il n'existe aucune expression d'activité déliérante. À certains moments, la conversation est engagée de manière impulsive, immédiate, comme un monologue. Il n'y a pas de barrage dans le discours, mais des modifications de vigilance et de tension dans le cours du dialogue. Le sujet s’isole brusquement dans une « réflexion » intérieure en restant toutefois joignable sur simple incitation. La gestuelle est parasitée par des mouvements répétitifs : cliquements d'yeux, acte de remonter sa manche et de tirer le fond du pantalon, mouvements des doigts de type précieux. S'ajoutent de véritables rituels : vérifications, marche en contrôlant la montre, attachement à certains objets d'utilisation courante (prendre son peignoir de bain)... On note enfin une résistance particulière à ces activités routinières et organisées. Le sommeil est toujours perturbé par des rêves et déambulations nocturnes.

Le score à l'échelle d'évaluation de l'autisme de Scholte (CARS) est de 34,5 : autisme moyen-léger. Le bilan paraclinique neurologique ne montre aucune anomalie caractérisée, le scanner est normal.

EXAMEN PSYCHOLOGIQUE

Échelle d'intelligence de Wechsler pour adultes (WAIS) (Tableau I)

Échelle Verbale QI 83.
Échelle Performance QI 64.
Échelle Totale QI 73.
Différence Verbale Performance 19.
Échelle verbale : la coopération est excellente, la stabilité bonne à la succession des épreuves, le jeune est peu fatigable. On note les résultats moyens faibles en information (9), arithmétique (7), vocabulaire (7), et similitudes (7). La mémoire de chiffres est bonne (12). La compréhension effondrée (1).

Cette épreuve montre bien la capacité de restitution des acquisitions sensibles aux apprentissages et de réalisation d'opérations simples. Il sait rattacher l'Iliade à Homère, Hamlet à Shakespeare, il sait définir l'OTAN. Les facultés d'abstraction et de conceptualisation sont faibles. Les réponses se font par proximité : dans la relation entre poème et statue, il voit que « les poètes peuvent être transformés en statue ». Au mot « coupe » de l'épreuve de vocabulaire, il répond « syllabe, une forme de poème, un quatrième ».

L'épreuve de compréhension est effondrée. Les réponses sont très immédiates, égocentriques, les idées sont bonnes mais sans aucun réalisme dans la situation. Les réponses témoignent de shunts, de relations courtes sans élaboration catégorielle entre les données. « Pourquoi un train a-t-il une locomotive ? » Réponse : « pour
Tableau I
WAIS, échelle d'intelligence de Wechsler pour adultes

<table>
<thead>
<tr>
<th>Note Standard</th>
<th>TESTS VERBAUX</th>
<th>TESTS DE PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Information</td>
<td>Compréhension</td>
</tr>
<tr>
<td>19</td>
<td>29</td>
<td>27-28</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>26</td>
</tr>
<tr>
<td>17</td>
<td>27</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>24</td>
<td>22</td>
</tr>
<tr>
<td>13</td>
<td>22-23</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>20-21</td>
<td>18-19</td>
</tr>
<tr>
<td>11</td>
<td>18-19</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>15-17</td>
<td>15-16</td>
</tr>
<tr>
<td>9</td>
<td>13-14</td>
<td>12-13</td>
</tr>
<tr>
<td>8</td>
<td>11-12</td>
<td>10-11</td>
</tr>
<tr>
<td>7</td>
<td>9-10</td>
<td>8-9</td>
</tr>
<tr>
<td>6</td>
<td>8-9</td>
<td>7-8</td>
</tr>
<tr>
<td>5</td>
<td>7-8</td>
<td>6-7</td>
</tr>
<tr>
<td>4</td>
<td>6-7</td>
<td>5-6</td>
</tr>
<tr>
<td>3</td>
<td>5-6</td>
<td>4-5</td>
</tr>
<tr>
<td>2</td>
<td>4-5</td>
<td>3-4</td>
</tr>
<tr>
<td>1</td>
<td>3-4</td>
<td>2-3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TEST

<table>
<thead>
<tr>
<th>Note brute</th>
<th>Note standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
<td>14</td>
</tr>
<tr>
<td>Compréhension</td>
<td>9-+</td>
</tr>
<tr>
<td>Mathématique</td>
<td>7</td>
</tr>
<tr>
<td>Mémoire de chiffres</td>
<td>12++</td>
</tr>
<tr>
<td>vocabulaire</td>
<td>28</td>
</tr>
<tr>
<td>Code</td>
<td>46-10</td>
</tr>
<tr>
<td>Cubes</td>
<td>24, 5</td>
</tr>
<tr>
<td>Arrang. d'images</td>
<td>12, 5</td>
</tr>
<tr>
<td>Assemblage d'objets</td>
<td>4, 0</td>
</tr>
<tr>
<td>Note de performance</td>
<td>22</td>
</tr>
<tr>
<td>Note totale</td>
<td>65</td>
</tr>
<tr>
<td>Echelle de performance</td>
<td>22, Q.1</td>
</tr>
<tr>
<td>Echelle totale</td>
<td>65, Q.1</td>
</tr>
</tbody>
</table>

transporter du charbon. » Pourquoi la plupart des gens sourds de naissance sont-ils incapables de parler? » Réponse: « parce qu'ils sont sourds-muets, ils n'entendent pas ce qu'on leur dit et donc ils ne peuvent pas répondre ». Les résultats de l'échelle verbale sont donc globalement d'un niveau normal faible, assez homogènes en dehors de la chute dans l'épuree de compréhension.

Échelle de performance : elle témoigne d'un niveau de déficience (64) hétérogène. L'épuree de code est la mieux réussie (10), le sujet manipule beaucoup les chiffres, il joue beaucoup au jeu des chiffres et de les lettres. Le sujet obtient 5 aux cubes de Kohs, 5 en arrangement d'images. Les épreuves les plus chutées sont le complément d'images (2) et l'assemblage d'objets (0). Il est incapable de reproduire un tout à partir d’éléments, et procède par persévération en essayant de reproduire un bonhomme alors que le modèle a changé. Cette faiblesse d'élaboration d'une cohérence spatiale existe aussi dans l'organisation d'une cohérence temporelle. La difficulté perceptive apparaît pleinement dans l'épuree de complétent d'image : sur un visage de profil dont il manque une partie du nez, il répond « les cheveux » qui sont en fait présents mais dans leur contour. Il manifeste encore des persévérations d'une image à l'autre : après l'image de la barque, il répond à l'image du navire dont il manque la cheminée « il manque une rame ».

Élaboration perceptive, figure de Rey (Figure 1 : IA : modèle, IB : copie, IC : mémoire)
Les résultats sont très faibles, inférieurs au centile 10 (C 10).
Copie : type V, < C 10 → niveau 4 ans
temps 3 min. 05 → C 50
score 11, < C 10 → niveau 4 ans
Mémoire : type V, < C 10 → niveau 4 ans
temps 4 min. 05
score 7, < C 10 → niveau 4 ans
Le sujet tente de juxtaposer les détails les plus significatifs pour lui (croix, carré, triangle, rond, losange) sans pouvoir trouver l'élément directeur de construction. La figure reste « ouverte », morcelée, sans contour général. En ce qui concerne la reproduction de mémoire, le sujet s'est relativement bien souvenu des repères utilisés à la copie. On note toutefois des « persévérations » dans la reproduction du carré et du rond.
Élaboration perceptive, test de rétention visuelle de Benton
Administration A, forme C, exposition de chaque dessin pendant 10 secondes avec reproduction immédiate de mémoire (Figure 2) :
Note attendue en fonction du niveau intellectuel 6
Note obtenue 1
Nombre d’erreurs attendues 6
Nombre d’erreurs obtenues 15
Parmi les erreurs, 9 erreurs « atteinte organique » soit 2 rotations, 4 persévérations, 3 omissions de la figure périphérique.
Les résultats à cette épreuve sont donc nettement pathologiques concernant la perception et la mémoire visuelle, les aptitudes visuo-construitives.

Épreuve de Rorschach
Cette épreuve permet ici d’apprécier les interactions pouvant exister entre les éléments cognitifs et émotionnels. Le protocole est caractérisé par le rétrécissement du fonctionnement mental, l’utilisation réduite des facteurs porteurs de signification. Les réponses sont répétitives et limitées, l’ensemble procède d’un processus de pétrification qui élimine toute possibilité de création (Tableau II).
Dans le registre d’une structure psychotique, le psychogramme est caractérisé par :
- F+% inférieur à 70, ici 50% chez notre patient.
- TRI extratensif, 1K/3 Σ C chez notre patient.
- Confabulations.
- Choc à la planche VI.
- Persévérations.
- Temps de latence en « coup de fusil » (très rapides, de l’ordre de 2 à 5 sec.).
- Alternance de bonnes et mauvaises réponses.
- F+% inférieur à 70 et persévérations renvoient à l’atteinte de la qualité du rapport avec la réalité externe. Les confabulations témoignent de processus cognitifs régis par les opérations d’une pensée égoцentricale et bizarre. TRI extratensif met l’accent sur le manque de contrôle de l’affectivité, l’aspect impulsif du mode de réaction. Le choc à la planche VII renvoie classiquement à une mauvaise intégration de relations précoces. Les persévérations marquent l’échec des capacités de différenciation, le manque de plasticité et la non observance de l’épreuve de réalité. L’aspect massif du rétrécissement montre bien ici la pauvreté associative, la pauvreté fantastmatique traduite par l’absence d’élaboration d’images significantes. Les processus cognitifs sont inadéquats également dans l’ordre de l’attention et de la concentration de la pensée. Ceci se traduit encore par un mode d’appréhension favorisant fortement l’approche globale : G% = 77 (la norme allant de 20% à 23%). Les réponses globales sont floues, s’étalent à l’infini, sans limite. Elles traduisent le défaut de séparation nette entre les objets (réponses montagnes, nuages...).
Dans le registre de l’attente « organique », nous relevons :
- une « bonne volonté » vis-à-vis de l’épreuve (pas d’inhibition ni de critique) ;
- une faible conscience de l’attitude interprétative ;
- un nombre de réponses réduit (entre 15 et 20, 22 chez notre patient) ;
- un grand nombre de G, mais de G- ou D/G- ;
<table>
<thead>
<tr>
<th>Modèle forme C1</th>
<th>Mémoire 1</th>
<th>Modèle forme C2</th>
<th>Mémoire 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modèle forme C3</th>
<th>Mémoire 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modèle forme C4</th>
<th>Mémoire 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modèle forme C5</th>
<th>Mémoire 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modèle forme C6</th>
<th>Mémoire 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 : Test de rétention visuelle de Benton.
— une diminution des D (22 % chez notre patient, la norme allant de 60 à 68 %);
— une diminution des K (1 seul chez notre patient);
— une tendance aux F indéterminées ;
— un nombre de réponses couleur faible à moyen, le plus souvent CF ou C (3 CF chez notre patient);
— TRI extratensif ;
— diminution du F+ % (50 % chez notre patient, la norme allant de 80 à 90 %);

— diminution du nombre des Ban (13 % chez notre patient, norme à 25 %);
— persévérations ;
— confabulations ;
— le nombre élevé de réponses Humaines (H+ = 31) à côté d’un nombre réduit de réponses kinesthésiques K montre la difficulté de contact et d’identification.

Nous notons l’absence de certains facteurs caractéristi-
Tableau II
Psychogramme de Rorschach

NOM :	19 ans, 10 mois
AGE :	
R :	22
T :	4'40
t :	13"
lat :	10° (de 8°20")

97% G	(14/16)
Conf :	Ban : 3
D :	Ori :

92% D	5
Dd :	
Dbl :	
Do :	
Po :	

Clob :	FCllob : 1
ClobF :	FC* : 1
F (C) :	

| FC/CF + C = |

| Ban % | 13 |
| F % | F + % |

TRI :	56/60
TR :	13
H % :	51

| QA : | |
| R(VIII-X) | R(I-VII) |

| VIII + IX + X % |
| H : Ad |
| N : |

| H : |
| |

| Observations : |
| Temps de latence en "coup de fusil". Nombreuses persévérations, répétitions.

Du registre « psychotique » on ne trouve pas dans le protocole :
— l’alternance de réponses Ori− et Ori+, en relation avec une pensée délirante ;
— le relachement dans la succession ;
— des contaminations (condensation de la pensée schizophrénique) ;
— des Dd bizarres (en relation avec une pensée délirante) ;
— des réponses Po, position, en relation avec une pensée morbide ;
— des contenus d’objets brisés, fendus, morcelés ;
— des réponses nombres, lettres, figures géométriques, en relation avec une pensée infantile régressive ;

Du registre « organique » on ne trouve pas dans le protocole :
— des temps de réaction allongés (de l’ordre d’une minute) ;
— d’augmentation de réponses détails Dd ;
— de présence de nominations couleur (« c’est rouge ») ;
— d’élévation des A % (réponses animales en relation avec une pensée stéréotypée) ;
— une augmentation des Ori−, réponses originales de mauvaise qualité ;
— de tournures stéréotypées du langage (phrases automatiques) ;
— de « refus » (absence totale de réponse à la planche) ; (Tableau III).

DISCUSSION
Les données sur le devenir des enfants atteints d’autisme infantile précoce évoluent beaucoup depuis quelques années. Tout d’abord la littérature anglo-saxonne tend à autonomiser le concept neuropsychologique d’autisme (syndromes autistiques) en le différenciant des psycho-ses infantiles. Le diagnostic d’autisme infantile serait porté à partir d’un début précoce (avant 3 ans environ), de difficultés primaires perceptives globales, et d’une incapacité à atteindre le niveau d’expression délirante.
et d’abstraction des sujets psychotiques. Les psychoses infantiles débuteraient plus tardivement, et seraient compatibles avec un développement psychique permettant une pensée délirante, des hallucinations, une organisation idéique. Le devenir à long terme pose le même problème d’une différenciation entre l’autisme dit résiduel et les psychoses dites schizophréniques comme mode d’évolution des psychoses infantiles. Si le débat épidémiologique semble actuellement réaliste en ce qui concerne les formes typiques, la discussion est moins aisée pour les formes de symptomatologie plus légère, dites autistes de haut niveau. Hans Asperger a décrit en 1944, un an après la description de Kanner, un syndrome qui porte son nom et a été confirmé par plusieurs auteurs (Lorna Wing, Christopher Gillberg). Le quotient intellectuel est normal ou subnormal, les capacités cognitives hétérogènes avec un QI verbal souvent significativement supérieur au QI performance. La pensée est restrictive, rigide, avec une mémoire mécanique bien développée. Les mouvements et les praxies sont maladroits, bizarres, rarement stéréotypés. Le langage est classiquement préservé, son développement se fait dans les délais normaux. Mais il existe des stéréotypies verbales, des aspects répétitifs, des néologismes, des troubles d’utilisation et de communication. Les troubles des interactions sociales sont majeurs, véritable « apraxie » des relations sociales. Le trouble du décodage et des apprentissages des codes sociaux s’accompagne de comportements ritualisés, circulaires, mais aussi d’impulsions rendant les échanges encore plus difficiles.

Ces sujets peuvent s’adapter au moins superficiellement à la grille éducative et scolaire, en gardant leurs conduites préférentielles et un isolement social. Le devenir à long terme est fort discuté : ce tableau clinique se trouve aux confins des débilités légères hétérogènes, des dysharmonies évolutives psychotiques, des autismes légers de haut niveau, et de certaines formes de schizophrénie.

Notre observation pourrait apporter contribution à une meilleure connaissance de ce syndrome, sachant la bonne collaboration de ces patients lors des évaluations.

Références

À lire...

TRAITÉ DE PSYCHOLOGIE COGNITIVE (TOMES 1, 2, 3)
CLAUDE BONNET, RODOLPHE GHIGLIONE,
JEAN-FRANÇOIS RICHARD

A des titres divers, la psychologie cognitive intéresse beaucoup de spécialistes. Les sciences cognitives naissantes regroupent des disciplines variées telles que les mathématiques, l'informatique, la philosophie, la psychologie : un constat d'interdisciplinarité jamais vu auparavant. Or la psychologie cognitive se situe vraiment à l'interface de cette coopération. Les spécialistes de la rééducation, notamment dans le champ du développement, ne peuvent rester en dehors des apports de ce renouvellement scientifique. Le Traité de psychologie cognitive vient présenter un panorama des acquis de cette discipline après dix années d'existence environ. Loin de doubler un ouvrage de psychologie expérimentale, cet ouvrage vient exposer le « renouveau conceptuel », qui, à partir de la méthodologie expérimentale, unifie des champs d'études de la psychologie jusque-là isolés. Le lecteur trouvera donc dans le traité de psychologie cognitive, moins que des résultats concernant les grandes fonctions de l'être humain, un axe d'approche des processus de traitement de l'information. Ainsi des activités jugées « de base » telles que le mouvement ou l'acoustique ne sont plus déconnectées des activités supérieures mais envisagées dans leur place à l'intérieur des mécanismes d'intégration. À l'inverse « la compréhension du fonctionnement cognitif ne peut être totalement indépendante des propriétés des entrées et des sorties du système cognitif. Le traité de psychologie cognitive comprend trois tomes : le premier est consacré à la perception, à l'action et au langage ; le deuxième aux activités intellectuelles et aux processus de résolution de problèmes ; le troisième, enfin, à la cognition sociale, aux représentations sociales et à la communication.

M. Barbeau

VISUAL AGNOSIA. DISORDERS OF OBJECT RECOGNITION AND WHAT THEY TELL US ABOUT NORMAL VISION
MARTHA FARAH

Le système visuel, par son architecture fonctionnelle, est particulièrement propre à servir de support à une analyse en termes de niveaux de traitement d'une information. Les difficultés que rencontrent les cliniciens qui se sont intéressés à l'agnosie depuis plus d'un siècle trouvent une éclaircissement dans le développement de la psychologie cognitive et des théories computationnelles. Le livre de Martha Farah vient accréder cette prise de position et l'étayer d'une analyse approfondie et nourrie de nombreuses références bibliographiques. Travail d'analyse et de synthèse, cet ouvrage regroupe avec pertinence des données multiples, élaborées sur une large période de temps par des cliniciens, neurologues et neuropsychologues, qui se sont penchés sur lénigme de l'agnosie. Des observations provenant de Lissauer, Luria, donc anciennes, sont confrontées à des approches plus contemporaines comme celles de Warrington et Taylor, Humphreys et Riddoch. Les grandes distinctions, classiques, élaborées par Lissauer, sont maintenues : agnosie aperceptive, agnosie associative. Cependant beaucoup de signes cliniques épars dans
diverses observations publiées dans la littérature ont le mérite d’avoir été regroupées d’une manière permettant le rapprochement avec les données de la psychologie cognitive. Ainsi les particularités des tableaux cliniques et les spécificités des tableaux sémiologiques sont reliés dans un travail de reconstruction des syndromes. De la sorte, le phénomène peu connu de simultagnosie est rapproché de celui d’agnosie aperceptive dans une de ses composantes.

Les données cliniques ainsi regroupées sont comparées aux résultats expérimentaux obtenus chez l’adulte normal et confrontées aux modèles actuels. En ce sens l’ouvrage de M. Farah est tout à fait dans la ligne de la neuropsychologie cognitive actuelle, tout en ayant su conserver une proximité avec les données cliniques et leur pertinence. L’étude du système visuel, la décomposition des processus qui permettent le passage de la stimulation bidimensionnelle rétinienne à la représentation de l’espace en trois dimensions, offre un terrain spécialement propice à la reconstruction conceptuelle que la psychologie cognitive est venue apporter dans le champ de la psychologie.

Un regret en fermant ce livre : l’aspect développemental de la perception visuelle n’est pas évoqué, ni la spécificité des troubles de la perception visuelle chez l’enfant.

M. Barbeau

Congrès

ENTRETIENS DE BICHAT ORTHOPHONIE

21 octobre 1991

École de Chimie, rue Saint-Dominique, 75018 Paris

PROGRAMME

Aspects cliniques et méthodes d’évaluation des troubles du langage chez l’enfant. Tables rondes du matin

Troubles du développement du langage oral

Évaluation et intérêts des troubles des entrées auditivo-verbales ; Professeur Lacert.

Intérêts pour l’évaluation des troubles dysphasiques des examens complémentaires (électroencéphalographie, débit sanguin) ; Docteur Billard.

Batteries psycholinguistiques état actuel et perspectives pour l’évaluation des troubles du langage chez l’enfant ; Madame Dumont.

Évaluation précoce des troubles du développement du langage oral ; Docteur Gérard.

Troubles acquis du langage oral

Trouble du langage oral chez l’enfant traumatisé crânien ; Madame Barbeau.

Trouble du langage dans le cadre du syndrome de Landau-Kleffner ; Docteur Franc.

Variétés sémiologiques des aphasies acquises de l’enfant en particulier des aphasies vasculaires ; Docteur Vanhout.

Les dyslexies. Tables rondes de l’après-midi

Dyslexies, aspects actuels

Relation entre troubles dyslexiques et troubles psychiatriques ; Professeur Dugas.

Aspects cliniques et thérapeutiques des dyslexies acquises de l’enfant ; Madame Ducarne.

Les dyslexies visuo-attentionnelles ; Madame Valdois.

Intérêts des typologies neurolinguistiques des dyslexies ; Docteur Gérard.
ASSOCIATION FRANÇAISE
du
SYNDROME DE WILLIAMS

L'association du Syndrome de Williams a tenu sa première journée d'information et d'échanges entre parents et professionnels le samedi 18 mai 1991.

Elle a réuni une trentaine de familles, et autant de professionnels directement concernés, médecins, instituteurs, éducateurs, psychologues, orthophonistes et kinésithérapeutes. Deux équipes de chercheurs avaient également tenu à faire le déploiement, celle du Dr Karmiloff-Smith, du MRC, à Londres, et celle du Dr Meljac, de l'hôpital Sainte-Anne, à Paris.

Tous les intervenants se sont félicité de l'existence de cette association. Elle est non seulement une source d'aide et d'échange pour les familles, mais aussi un moyen de faire connaître le syndrome et, bien sûr, la possibilité de constituer un échantillon pour la recherche tout en favorisant les échanges interdisciplinaires.

La réunion fut d'abord l'occasion de faire le point sur l'état des connaissances.

Selon le professeur Casasopranu, de l'Hôpital Robert-Debré, à Paris, si 50 à 60 % des « Williams » agés d'un an sont porteurs de rétrécissements vasculaires, seuls un tiers environ d'entre eux nécessiteront une intervention.

Cependant, du fait de l'évolutivité liée à la croissance, 90 % des adultes en sont plus ou moins affectés.

Mme Becker, psychologue, a suivi en cardiopédiatrie une trentaine d'enfants porteurs du syndrome. Elle a confirmé une grande instabilité psychomotrice et une hyperactivité, succédant à une hypotonie du nourrisson.

Leur hyper réceptivité aux stimuli de l'environnement est corollée à de grandes difficultés d'attention ; leur grande sociabilité est souvent dénuée d'adaptabilité ; leur grande anxiété, et, parfois, leur inhibition, ont des origines multiples. Quant aux performances intellectuelles, une déficience globale modérée est la plus fréquente, mais les résultats sont très hétérogènes et variables d'un enfant à l'autre.

Aucune méthode d'apprentissage ne semble pouvoir être préconisée systématiquement, ainsi que l'a souligné Mme Chérier, institutrice spécialisée. Il s'agit pour les parents, même si le système de l'éducation nationale est parfois rigide, de faire preuve de créativité.

Ce fut aussi l'occasion d'ouvrir des perspectives. L'équipe du Dr Karmiloff-Smith travaille sur le développement cognitif. Sa recherche actuelle porte sur ce qui distingue le langage, relativement évolué et au profil caractéristique, des « Williams », de celui d'autres handicapés (trisomiques 21, autistes, hydrocéphales...).

Les Drs Meljac et Bailly, de l'Hôpital Sainte-Anne, envisagent de commencer un travail sur la logique du nombre, difficulté prévalente chez les « Williams ». M. Gilbert, kinésithérapeute et membre de l'Institut National d'Ostéopathie, qui suit un bébé « Williams », pense qu'il serait utile de regrouper les informations concernant les caractéristiques craniennes de ces enfants.

Toutes ces recherches, a précisé la présidente Mme Delga, peuvent aider à authentifier ce syndrome méconnu et contesté et à en mieux connaître les spécificités. Cet, bien sûr, ne saurait faire oublier la nécessité d'une approche globale de ces enfants, qui restent des personnes uniques et originales.
Dictionnaire analytique d'épileptologie clinique

Pierre Loiseau
Pierre Jallon

1990, broché
346 pages
ISBN 086196-300-8
295 FF

« Les deux auteurs sont trop connus pour leurs travaux en épileptologie pour qu'il soit vraiment nécessaire de recommander cet ouvrage dont la qualité est évidemment excellente. Sous l'aspect modeste d'un dictionnaire, il y a donc une véritable mine de renseignements que tous les neurologues se devraient d'avoir à leur disposition. »

La revue du praticien.

« En présentant ce dictionnaire analytique, les auteurs mettent à la disposition des neurologues, des pédiatres et de l'ensemble des médecins un instrument de travail de qualité exceptionnelle. »

La presse médicale.

BON DE COMMANDE

Nom .. Prénom ..

Adresse ...

Désire recevoir l'ouvrage **Dictionnaire analytique de l'épileptologie clinique** au prix de 295 FF + 30 FF de frais de port, soit 325 FF.

Ci-joint mon règlement à l'ordre de **John Libbey Eurotext**,
6, rue Blanche, 92120 Montrouge, France. Tél. : (1) 47.35.85.52
Approche Neuropsychologique des Apprentissages chez l’enfant

- La revue ANAE aborde des domaines extrêmement variés tels que la pédagogie appliquée aux enfants, les mécanismes des fonctions cognitives (mémoire, langage, perceptions visuelles et auditives) et les anomalies de leur développement ou de leur détérioration.

- Réalisée par des spécialistes en neuropsychologie, ANAE offre la possibilité aux chercheurs, biologistes et aux spécialistes (psycholinguistes, psychiatres, pédiatres...) et cliniciens de confronter leurs réflexions et leurs observations. Par l’intermédiaire d’articles originaux, en français ou en anglais, de cas cliniques, d’analyses d’articles et de livres, ANAE ouvre de nouvelles perspectives pour une meilleure compréhension des processus d'apprentissages chez l’enfant.

Juin 1991
numéro 2
volume 3

BULLETIN D'ABONNEMENT ANNUEL-TARIF 1991 - 4 NUMÉROS

<table>
<thead>
<tr>
<th></th>
<th>France</th>
<th>Etranger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particuliers</td>
<td>450 FF</td>
<td>600 FF</td>
</tr>
<tr>
<td>Institutions</td>
<td>580 FF</td>
<td>720 FF</td>
</tr>
<tr>
<td>Etudiants</td>
<td>300 FF</td>
<td>390 FF</td>
</tr>
</tbody>
</table>

Prix au numéro 150 FF

Les frais de port sont inclus dans ces tarifs.

(1) Tarif étudiant consentis sur présentations de la photocopie de la carte d'étudiant R²-V² en cours de validité.

Veuillez m'abonner à ANAE au tarif coché ci-dessus, soit FF

Je joins un chèque bancaire □ un chèque postal □

Nom ___
Adresse ___

Date __________________________ Signature ________________________

Ce bulletin est à renvoyer à : CDR, 11, rue Gosselin, 92120 Montrouge, France.